(FBIOyF) Departamento de Ciencias Biológicas - Artículo de Revista
URI permanente para esta colección
Examinar
Envíos recientes
Ítem Acceso Abierto Ready for new waves: optimizing SARS-CoV-2 variants monitoring in pooled samples with droplet digital PCR(Frontiers Media, 2024-01-11) Pacini, Antonella; Paredes, Franco; Heckel, Sofía; Ibarra, Guadalupe; Petreli, María Victoria; Perez, Marilina; Agnella, Yanina; Piskulic, Laura; Allasia, María Belén; Caprile, Luis; Colaneri, Alejandro; Sesma, JulianaIntroduction: The declaration of the end of the Public Health Emergency for COVID-19 on May 11th, 2023, has shifted the global focus led by WHO and CDC towards monitoring the evolution of SARS-CoV-2. Augmenting these international endeavors with local initiatives becomes crucial to not only track the emergence of new variants but also to understand their spread. We present a cost-effective digital PCR-based pooled sample testing methodology tailored for early variant surveillance. Methods: Using 1200 retrospective SARS-CoV-2 positive samples, either negative or positive for Delta or Omicron, we assessed the sensitivity and specificity of our detection strategy employing commercial TaqMan variant probes in a 1:9 ratio of variant-positive to variant-negative samples. Results: The study achieved 100% sensitivity and 99% specificity in 10-sample pools, with an Area Under the Curve (AUC) exceeding 0.998 in ROC curves, using distinct commercial TaqMan variant probes. Discussion: The employment of two separate TaqMan probes for both Delta and Omicron establishes dual validation routes, emphasizing the method’s robustness. Although we used known samples to model realistic emergence scenarios of the Delta and Omicron variants, our main objective is to demonstrate the versatility of this strategy to identify future variant appearances. The utilization of two divergent variants and distinct probes for each confirms the method’s independence from specific variants and probes. This flexibility ensures it can be tailored to recognize any subsequent variant emergence, given the availability of its sequence and a specific probe. Consequently, our approach stands as a robust tool for tracking and managing any new variant outbreak, reinforcing our global readiness against possible future SARS-CoV-2 waves.Ítem Acceso Abierto Reactive oxygen species generated in chloroplasts contribute to tobacco leaf infection by the necrotrophic fungus Botrytis cinerea(Society for Experimental Biology, 2017-10) Rossi, Franco R.; Krapp, Adriana R.; Bisaro, Fabiana; Maiale, Santiago J.; Pieckenstain, Fernando L.; Carrillo, NéstorReactive oxygen species (ROS) play fundamental roles in plant responses to pathogen infection, including modulation of cell death processes and defense-related gene expression. Cell death triggered as part of the hypersensitive response enhances resistance to biotrophic pathogens, but favors the virulence of necrotrophs. Even though the involvement of ROS in the orchestration of defense responses is well established, the relative contribution of specific subcellular ROS sources to plant resistance against microorganisms with different pathogenesis strategies is not completely known. The aim of this work was to investigate the role of chloroplastic ROS in plant defense against a typical necrotrophic fungus, Botrytis cinerea. For this purpose, we used transgenic Nicotiana tabacum (tobacco) lines expressing a plastid-targeted cyanobacterial flavodoxin (pfld lines), which accumulate lower chloroplastic ROS in response to different stresses. Tissue damage and fungal growth were significantly reduced in infected leaves of pfld plants, as compared with infected wild-type (WT) counterparts. ROS build-up triggered by Botrytis infection and associated with chloroplasts was significantly decreased (70–80%) in pfld leaves relative to the wild type. Phytoalexin accumulation and expression of pathogenesis-related genes were induced to a lower degree in pfld plants than in WT siblings. The impact of fungal infection on photosynthetic activity was also lower in pfld leaves. The results indicate that chloroplast-generated ROS play a major role in lesion development during Botrytis infection. This work demonstrates that the modulation of chloroplastic ROS levels by the expression of a heterologous antioxidant protein can provide a significant degree of protection against a canonical necrotrophic fungus.Ítem Acceso Abierto Early cold stress responses in post-meiotic anthers from tolerant and sensitive rice cultivars(SpringerOpen, 2019-12-18) González Schain, Nahuel; Roig-Villanova, Irma; Kater, Martin M.; http://orcid.org/0000-0003-1155-2575Background: Rice grain production is susceptible to a changing environment that imposes both biotic and abiotic stress conditions. Cold episodes are becoming more frequent in the last years and directly affect rice yield in areas with a temperate climate. Rice is particularly susceptible to cold stress during the reproductive phase, especially in anthers during post-meiotic stages which, in turn, affect pollen production. However, a number of rice cultivars with a certain degree of tolerance to cold have been described, which may represent a good breeding resource for improvement of susceptible commercial varieties. Plants experiencing cold stress activate a molecular response in order to reprogram many metabolic pathways to face these hostile conditions. Results: Here we performed RNA-seq analysis using cold-stressed post-meiotic anther samples from a cold-tolerant, Erythroceros Hokkaido (ERY), and a cold-susceptible commercial cultivar Sant’Andrea (S.AND). Both cultivars displayed an early common molecular response to cold, although the changes in expression levels are much more drastic in the tolerant one. Comparing our datasets, obtained after one-night cold stress, with other similar genome-wide studies showed very few common deregulated genes, suggesting that molecular responses in coldstressed anthers strongly depend on conditions and the duration of the cold treatments. Cold-tolerant ERY exhibits specific molecular responses related to ethylene metabolism, which appears to be activated after cold stress. On the other hand, S.AND cold-treated plants showed a general downregulation of photosystem I and II genes, supporting a role of photosynthesis and chloroplasts in cold responses in anthers, which has remained elusive. Conclusions: Our study revealed that a number of ethylene-related transcription factors, as putative master regulators of cold responses, were upregulated in ERY providing promising candidates to confer tolerance to susceptible cultivars. Our results also suggest that the photosynthesis machinery might be a good target to improve cold tolerance in anthers. In summary, our study provides valuable candidates for further analysis and molecular breeding for cold-tolerant rice cultivars.Ítem Acceso Abierto Characterization of the accessory protein ClpT1 from Arabidopsis thaliana: oligomerization status and interaction with Hsp100 chaperones(BMC, 2014-08-24) Colombo, Clara V.; Ceccarelli, Eduardo Augusto; Rosano, Germán L.Background: The caseinolytic protease (Clp) is crucial for chloroplast biogenesis and proteostasis. The Arabidopsis Clp consists of two heptameric rings (P and R rings) assembled from nine distinct subunits. Hsp100 chaperones (ClpC1/2 and ClpD) are believed to dock to the axial pores of Clp and then transfer unfolded polypeptides destined to degradation. The adaptor proteins ClpT1 and 2 attach to the protease, apparently blocking the chaperone binding sites. This competition was suggested to regulate Clp activity. Also, monomerization of ClpT1 from dimers in the stroma triggers P and R rings association. So, oligomerization status of ClpT1 seems to control the assembly of the Clp protease. Results: In this work, ClpT1 was obtained in a recombinant form and purified. In solution, it mostly consists of monomers while dimers represent a small fraction of the population. Enrichment of the dimer fraction could only be achieved by stabilization with a crosslinker reagent. We demonstrate that ClpT1 specifically interacts with the Hsp100 chaperones ClpC2 and ClpD. In addition, ClpT1 stimulates the ATPase activity of ClpD by more than 50% when both are present in a 1:1 molar ratio. Outside this optimal proportion, the stimulatory effect of ClpT1 on the ATPase activity of ClpD declines. Conclusions: The accessory protein ClpT1 behaves as a monomer in solution. It interacts with the chloroplastic Hsp100 chaperones ClpC2 and ClpD and tightly modulates the ATPase activity of the latter. Our results provide new experimental evidence that may contribute to revise and expand the existing models that were proposed to explain the roles of this poorly understood regulatory protein.Ítem Acceso Abierto Deciphering the metabolic pathways influencing heat and cold responses during post-harvest physiology of peach fruit(Wiley, 2014-01-21) Lauxmann, Martín Alexander; Borsani, Julia; Osorio, Sonia; Lombardo, Verónica Andrea; Budde, Claudio O.; Bustamante, Claudia Anabel; Monti, Laura Lucía; Andreo, Carlos Santiago; Fernie, Alisdair R.; Drincovich, María Fabiana; Lara, María ValeriaPeaches are highly perishable and deteriorate quickly at ambient temperature. Cold storage is commonly used to prevent fruit decay; however, it affects fruit quality causing physiological disorders collectively termed ‘chilling injury’ (CI). To prevent or ameliorate CI, heat treatment is often applied prior to cold storage. In the present work, metabolic profiling was performed to determine the metabolic dynamics associated with the induction of acquired CI tolerance in response to heat shock. ‘Dixiland’ peach fruits exposed to 39 °C, cold stored, or after a combined treatment of heat and cold, were compared with fruits ripening at 20 °C. Dramatic changes in the levels of compatible solutes such as galactinol and raffinose were observed, while amino acid precursors of the phenylpropanoid pathway were also modified due to the stress treatments, as was the polyamine putrescine. The observed responses towards temperature stress in peaches are composed of both common and specific response mechanisms to heat and cold, but also of more general adaptive responses that confer strategic advantages in adverse conditions such as biotic stresses. The identification of such key metabolites, which prime the fruit to cope with different stress situations, will likely greatly accelerate the design and the improvement of plant breeding programs.Ítem Acceso Abierto Unravelling early events in the Taphrina deformans–Prunus persica interaction: an insight into the differential responses in resistant and susceptible genotypes(Wiley, 2017-07-12) Svetaz, Laura Andrea; Bustamante, Claudia Anabel; Goldy, Camila; Rivero, Nery Alberto; Müller, Gabriela Leticia; Valentini, Gabriel Hugo; Fernie, Alisdair R.; Drincovich, María Fabiana; Lara, María Valeria; https://orcid.org/0000-0003-4914-0242; Dr. Bellini, E.: provide P. persica selections DOFI-84.364.089 and DOFI-84.364.060; Dr. Giordani, E.: provide P. persica selections DOFI-84.364.089 and DOFI-84.364.060Leaf peach curl is a devastating disease affecting leaves, flowers and fruits, caused by the dimorphic fungus Taphrina deformans. To gain insight into the mechanisms of fungus pathogenesis and plant responses, leaves of a resistant and two susceptible Prunus persica genotypes were inoculated with blastospores (yeast), and the infection was monitored during 120 h post inoculation (h.p.i.). Fungal dimorphism to the filamentous form and induction of reactive oxygen species (ROS), callose synthesis, cell death and defence compound production were observed independently of the genotype. Fungal load significantly decreased after 120 h.p.i. in the resistant genotype, while the pathogen tended to grow in the susceptible genotypes. Metabolic profiling revealed a biphasic re-programming of plant tissue in susceptible genotypes, with an initial stage co-incident with the yeast form of the fungus and a second when the hypha is developed. Transcriptional analysis of PRs and plant hormone-related genes indicated that pathogenesis-related (PR) proteins are involved in P. persica defence responses against T. deformans and that salicylic acid is induced in the resistant genotype. Conducted experiments allowed the elucidation of common and differential responses in susceptible versus resistant genotypes and thus allow us to construct a picture of early events during T. deformans infection.Ítem Acceso Abierto G-quadruplexes as novel cis-elements controlling transcription during embryonic development(Oxford University Press, 2016-01-14) David, Aldana P.; Margarit, Ezequiel; Domizi, Pablo; Banchio, Claudia; Armas, Pablo; Calcaterra, Nora B.G-quadruplexes are dynamic structures folded in G-rich single-stranded DNA regions. These structures have been recognized as a potential nucleic acid based mechanism for regulating multiple cellular processes such as replication, transcription and genomic maintenance. So far, their transcriptional role in vivo during vertebrate embryonic development has not yet been addressed. Here, we performed an in silico search to find conserved putative G-quadruplex sequences (PQSs) within proximal promoter regions of human, mouse and zebrafish developmental genes. Among the PQSs able to fold in vitro as G-quadruplex, those present in nog3, col2a1 and fzd5 promoters were selected for further studies. In cellulo studies revealed that the selected G-quadruplexes affected the transcription of luciferase controlled by the SV40 nonrelated promoter. G-quadruplex disruption in vivo by microinjection in zebrafish embryos of either small ligands or DNA oligonucleotides complementary to the selected PQSs resulted in lower transcription of the targeted genes. Moreover, zebrafish embryos and larvae phenotypes caused by the presence of complementary oligonucleotides fully resembled those ones reported for nog3, col2a1 and fzd5 morphants. To our knowledge, this is the first work revealing in vivo the role of conserved G-quadruplexes in the embryonic development, one of the most regulated processes of the vertebrates biology.Ítem Desconocido Beyond the binding site: In vivo Identification of tbx2, smarca5 and wnt5b as molecular targets of CNBP during embryonic development(Public Library of Science, 2013-05-07) Armas, Pablo; Margarit, Ezequiel; Mouguelar, Valeria; Allende, Miguel L.; Calcaterra, Nora B.CNBP is a nucleic acid chaperone implicated in vertebrate craniofacial development, as well as in myotonic dystrophy type 2 (DM2) and sporadic inclusion body myositis (sIBM) human muscle diseases. CNBP is highly conserved among vertebrates and has been implicated in transcriptional regulation; however, its DNA binding sites and molecular targets remain elusive. The main goal of this work was to identify CNBP DNA binding sites that might reveal target genes involved in vertebrate embryonic development. To accomplish this, we used a recently described yeast one-hybrid assay to identify DNA sequences bound in vivo by CNBP. Bioinformatic analyses revealed that these sequences are G-enriched and show high frequency of putative G-quadruplex DNA secondary structure. Moreover, an in silico approach enabled us to establish the CNBP DNA-binding site and to predict CNBP putative targets based on gene ontology terms and synexpression with CNBP. The direct interaction between CNBP and candidate genes was proved by EMSA and ChIP assays. Besides, the role of CNBP upon the identified genes was validated in loss-of-function experiments in developing zebrafish. We successfully confirmed that CNBP up-regulates tbx2b and smarca5, and down-regulates wnt5b gene expression. The highly stringent strategy used in this work allowed us to identify new CNBP target genes functionally important in different contexts of vertebrate embryonic development. Furthermore, it represents a novel approach toward understanding the biological function and regulatory networks involving CNBP in the biology of vertebrates.Ítem Desconocido Gene expression changes throughout the life cycle allow a bacterial plant pathogen to persist in diverse environmental habitats(Public Library of Science, 2023-12-19) De Pedro-Jové, Roger; Corral, Jordi; Rocafort, Mercedes; Puigvert, Marina; Azam, Fàtima Latif; Vandecaveye, Agustina; Macho, Alberto P.; Balsalobre , Carlos; Coll, Núria S.; Orellano, Elena G.; Valls, Marc; https://orcid.org/0000-0003-2312-0091Bacterial pathogens exhibit a remarkable ability to persist and thrive in diverse ecological niches. Understanding the mechanisms enabling their transition between habitats is crucial to control dissemination and potential disease outbreaks. Here, we use Ralstonia solanacearum, the causing agent of the bacterial wilt disease, as a model to investigate pathogen adaptation to water and soil, two environments that act as bacterial reservoirs, and compare this information with gene expression in planta. Gene expression in water resembled that observed during late xylem colonization, with an intriguing induction of the type 3 secretion system (T3SS). Alkaline pH and nutrient scarcity—conditions also encountered during late infection stages–were identified as the triggers for this T3SS induction. In the soil environment, R. solanacearum upregulated stress-responses and genes for the use of alternate carbon sources, such as phenylacetate catabolism and the glyoxylate cycle, and downregulated virulence-associated genes. We proved through gain- and loss-of-function experiments that genes associated with the oxidative stress response, such as the regulator OxyR and the catalase KatG, are key for bacterial survival in soil, as their deletion cause a decrease in culturability associated with a premature induction of the viable but non culturable state (VBNC). This work identifies essential factors necessary for R. solanacearum to complete its life cycle and is the first comprehensive gene expression analysis in all environments occupied by a bacterial plant pathogen, providing valuable insights into its biology and adaptation to unexplored habitats.Ítem Desconocido Engineering a bifunctional copper site in the cupredoxin fold by loop-directed mutagenesis(Royal Society of Chemistry, 2018-06-28) Espinoza Cara, Andrés; Zitare, Ulises A.; Alvarez Paggi , Damián; Klinke, Sebastián; Otero, Lisandro H.; Murgida, Daniel H.; Vila, Alejandro J.; https://orcid.org/0000-0003-0500-4513; https://orcid.org/0000-0003-0248-6916; https://orcid.org/0000-0002-1507-9685; https://orcid.org/0000-0002-8777-0870; https://orcid.org/0000-0002-5448-5483; https://orcid.org/0000-0001-5173-0183; https://orcid.org/0000-0002-7978-3233Copper sites in proteins are designed to perform either electron transfer or redox catalysis. Type 1 and CuA sites are electron transfer hubs bound to a rigid protein fold that prevents binding of exogenous ligands and side reactions. Here we report the engineering of two Type 1 sites by loop-directed mutagenesis within a CuA scaffold with unique electronic structures and functional features. A copper–thioether axial bond shorter than the copper–thiolate bond is responsible for the electronic structure features, in contrast to all other natural or chimeric sites where the copper thiolate bond is short. These sites display highly unusual features, such as: (1) a high reduction potential despite a strong interaction with the axial ligand, which we attribute to changes in the hydrogen bond network and (2) the ability to bind exogenous ligands such as imidazole and azide. This strategy widens the possibility of using natural protein scaffolds with functional features not present in nature.Ítem Acceso Abierto Optimization of protease production and sequence analysis of the purified enzyme from the cold adapted yeast Rhodotorula mucilaginosa CBMAI 1528(Elsevier, 2020-10-21) Lario, Luciana Daniela; Pillaca-Pullo, Omar Santiago; Sette, Lara Durães; Converti, Attilio; Casati, Paula; Spampinato, Claudia P.; Pessoa, AdalbertoEnzymes from cold-adapted microorganisms are of high interest to industries due to their high activity at low and mild temperatures, which makes them suitable for their use in several processes that either require a supply of exogenous energy or involve the use of heat labile products. In this work, the protease production by the strain Rhodotorula mucilaginosa CBMAI 1528, previously isolated from the Antarctic continent, was optimized, and the purified enzyme analyzed. It was found that protease production was dependent on culture medium composition and growth temperature, being 20 C and a culture medium containing both glucose and casein peptone (20 and 10 g/L, respectively) the optimal growing conditions in batch as well as in bioreactor. Moreover, mass spectrometry analysis revealed that the enzyme under study has a 100 % sequence identity with the deduced amino acid sequence of a putative aspartic protease from Rhodotorula sp. JG-1b (protein ID: KWU42276.1). This result was confirmed by the decrease of 95 % proteolytic activity by pepstatin A, a specific inhibitor of aspartic proteases. We propose that the enzyme reported here could be Rodothorulapepsin, a protein characterized in 1972 that did not have an associated sequence to date and has been classified as an orphan enzyme.Ítem Acceso Abierto Transcriptional and metabolic profiling of potato plants expressing a plastid-targeted electron shuttle reveal modulation of genes associated to drought tolerance by chloroplast redox poise(MDPI, 2020-09-29) Pierella Karlusich, Juan J.; Arce, Rocío C.; Shahinnia, Fahimeh; Sonnewald, Sophia; Sonnewald, Uwe; Zurbriggen, Matias D.; Hajirezaei, Mohammad-Reza; Carrillo, Néstor; https://orcid.org/0000-0003-1739-4424; https://orcid.org/0000-0001-6549-6316; https://orcid.org/0000-0001-8236-7647; https://orcid.org/0000-0002-9185-6255Water limitation represents the main environmental constraint affecting crop yield worldwide. Photosynthesis is a primary drought target, resulting in over-reduction of the photosynthetic electron transport chain and increased production of reactive oxygen species in plastids. Manipulation of chloroplast electron distribution by introducing alternative electron transport sinks has been shown to increase plant tolerance to multiple environmental challenges including hydric stress, suggesting that a similar strategy could be used to improve drought tolerance in crops. We show herein that the expression of the cyanobacterial electron shuttle flavodoxin in potato chloroplasts protected photosynthetic activities even at a pre-symptomatic stage of drought. Transcriptional and metabolic profiling revealed an attenuated response to the adverse condition in flavodoxin-expressing plants, correlating with their increased stress tolerance. Interestingly, 5–6% of leaf-expressed genes were affected by flavodoxin in the absence of drought, representing pathways modulated by chloroplast redox status during normal growth. About 300 of these genes potentially contribute to stress acclimation as their modulation by flavodoxin proceeds in the same direction as their drought response in wild-type plants. Tuber yield losses under chronic water limitation were mitigated in flavodoxin-expressing plants, indicating that the flavoprotein has the potential to improve major agronomic traits in potato.Ítem Acceso Abierto Centrosomal AKAP350 modulates the G1/S transition(Landes Bioscience, 2013-10-10) Mattaloni, Stella M.; Ferretti, Anabela Cecilia; Tonucci, Facundo Mauro; Favre, Cristian; Goldenring, James R.; Larocca, María CeciliaAKAP350 (AKAP450/AKAP9/CG-NAP) is an A-kinase anchoring protein, which recruits multiple signaling proteins to the Golgi apparatus and the centrosomes. Several proteins recruited to the centrosomes by this scaffold participatein the regulation of the cell cycle. Previous studies indicated that AKAP350 participates in centrosome duplication. In the present study we specifically assessed the role of AKAP350 in the progression of the cell cycle. Our results showed that interference with AKAP350 expression inhibits G1/S transition, decreasing the initiation of both DNA synthesis and centrosome duplication. We identified an AKAP350 carboxyl-terminal domain (AKAP350CTD), which contained the centrosomal targeting domain of AKAP350 and induced the initiation of DNA synthesis. Nevertheless, AKAP350CTD expression did not induce centrosomal duplication. AKAP350CTD partially delocalized endogenous AKAP350 from the centrosomes, but increased the centrosomal levels of the cyclin-dependent kinase 2 (Cdk2). Accordingly, the expression of this AKAP350 domain increased the endogenous phosphorylation of nucleophosmin by Cdk2, which occurs at the G1 /S transition and is a marker of the centrosomal activity of the cyclin E-Cdk2 complex. Cdk2 recruitment to the centrosomes is a necessary event for the development of the G1/S transition. Altogether, our results indicate that AKAP350 facilitates the initiation of DNA synthesis by scaffolding Cdk2 to the centrosomes, and enabling its specific activity at this organelle. Although this mechanism could also be involved in AKAP350-dependent modulation of centrosomal duplication, it is not sufficient to account for this process.Ítem Acceso Abierto Genetic variations in G-quadruplex forming sequences affect the transcription of human disease-related genes(Oxford University Press, 2023-11-01) Lorenzatti, Agustín; Piga, Ernesto José; Gismondi, Mauro; Binolfi, Andrés; Margarit, Ezequiel; Calcaterra, Nora B.; Armas, PabloGuanine-rich DNA strands can fold into non-canonical four-stranded secondary structures named G-quadruplexes (G4s). G4s folded in proximal promoter regions (PPR) are associated either with positive or negative transcriptional regulation. Given that single nucleotide variants (SNVs) affecting G4 folding (G4-Vars) may alter gene transcription, and that SNVs are associated with the human diseases’ onset, we undertook a novel comprehensive study of the G4-Vars genome-wide (G4-variome) to find disease-associated G4-Vars located into PPRs. We developed a bioinformatics strategy to find disease-related SNVs located into PPRs simultaneously overlapping with putative G4-forming sequences (PQSs). We studied five G4-Vars disturbing in vitro the folding and stability of the G4s located into PPRs, which had been formerly associated with sporadic Alzheimer’s disease (GRIN2B), a severe familiar coagulopathy (F7), atopic dermatitis (CSF2), myocardial infarction (SIRT1) and deafness (LHFPL5). Results obtained in cultured cells for these five G4-Vars suggest that the changes in the G4s affect the transcription, potentially contributing to the development of the mentioned diseases. Collectively, data reinforce the general idea that G4-Vars may impact on the different susceptibilities to human genetic diseases’ onset, and could be novel targets for diagnosis and drug design in precision medicine.Ítem Acceso Abierto Plastid-targeted Cyanobacterial Flavodiiron proteins maintain carbohydrate turnover and enhance drought stress tolerance in barley(Frontiers Media, 2021-02-13) Shahinnia, Fahimeh; Tula, Suresh; Hensel, Goetz; Reiahisamani, Narges; Nasr, Nasrin; Kumlehn, Jochen; Gómez, Rodrigo Lionel; Lodeyro, Anabella F.; Carrillo, Néstor; Hajirezaei, Mohammad-RezaChloroplasts, the sites of photosynthesis in higher plants, have evolved several means to tolerate short episodes of drought stress through biosynthesis of diverse metabolites essential for plant function, but these become ineffective when the duration of the stress is prolonged. Cyanobacteria are the closest bacterial homologs of plastids with two photosystems to perform photosynthesis and to evolve oxygen as a byproduct. The presence of Flv genes encoding flavodiiron proteins has been shown to enhance stress tolerance in cyanobacteria. In an attempt to support the growth of plants exposed to drought, the Synechocystis genes Flv1 and Flv3 were expressed in barley with their products being targeted to the chloroplasts. The heterologous expression of both Flv1 and Flv3 accelerated days to heading, increased biomass, promoted the number of spikes and grains per plant, and improved the total grain weight per plant of transgenic lines exposed to drought. Improved growth correlated with enhanced availability of soluble sugars, a higher turnover of amino acids and the accumulation of lower levels of proline in the leaf. Flv1 and Flv3 maintained the energy status of the leaves in the stressed plants by converting sucrose to glucose and fructose, immediate precursors for energy production to support plant growth under drought. The results suggest that sugars and amino acids play a fundamental role in the maintenance of the energy status and metabolic activity to ensure growth and survival under stress conditions, that is, water limitation in this particular case. Engineering chloroplasts by Flv genes into the plant genome, therefore, has the potential to improve plant productivity wherever drought stress represents a significant production constraint.Ítem Acceso Abierto Recombinant protein expression in microbial systems(Frontiers, 2014-07-08) Rosano, Germán L.; Ceccarelli, Eduardo AugustoThe emergence of recombinant DNA technology during the early 70's set a revolution in molecular biology. This set of techniques was strengthened even further later on with the introduction of the polymerase chain reaction and allowed scientists to explore and understand essential life processes in an easy and straightforward way. It also marked the birth of the modern biotech industry [...]Ítem Acceso Abierto Akap350 recruits Eb1 to the spindle poles, ensuring proper spindle orientation and lumen formation in 3d epithelial cell cultures(Springer Nature, 2017-11-02) Almada, Evangelina; Tonucci, Facundo Mauro; Hidalgo, Florencia; Ferretti, Anabela Cecilia; Pariani, Alejandro Pedro; Favre, Cristian; Larocca, María Cecilia; Ibarra, Solange; Vena, Rodrigo; Girardini, Javier; Kierbel, ArlinetThe organization of epithelial cells to form hollow organs with a single lumen requires the accurate three-dimensional arrangement of cell divisions. Mitotic spindle orientation is defined by signaling pathways that provide molecular links between specific spots at the cell cortex and astral microtubules, which have not been fully elucidated. AKAP350 is a centrosomal/Golgi scaffold protein, implicated in the regulation of microtubule dynamics. Using 3D epithelial cell cultures, we found that cells with decreased AKAP350 expression (AKAP350KD) formed polarized cysts with abnormal lumen morphology. Analysis of mitotic cells in AKAP350KD cysts indicated defective spindle alignment. We established that AKAP350 interacts with EB1, a microtubule associated protein that regulates spindle orientation, at the spindle poles. Decrease of AKAP350 expression lead to a significant reduction of EB1 levels at spindle poles and astral microtubules. Conversely, overexpression of EB1 rescued the defective spindle orientation induced by deficient AKAP350 expression. The specific delocalization of the AKAP350/EB1complex from the centrosome decreased EB1 levels at astral microtubules and lead to the formation of 3D-organotypic structures which resembled AKAP350KD cysts. We conclude that AKAP350 recruits EB1 to the spindle poles, ensuring EB1 presence at astral microtubules and proper spindle orientation during epithelial morphogenesis.Ítem Acceso Abierto Crystal structure of the FAD-containing ferredoxin-NADP+ reductase from the plant pathogen Xanthomonas axonopodis pv. citri(Hindawi, 2013-08-01) Tondo, María Laura; Hurtado-Guerrero, Ramón; Ceccarelli, Eduardo Augusto; Medina, Milagros; Orellano, Elena G.; Martínez-Júlvez, Marta; https://orcid.org/0000-0002-3122-9401We have solved the structure of ferredoxin-NADP(H) reductase, FPR, from the plant pathogen Xanthomonas axonopodis pv. citri, responsible for citrus canker, at a resolution of 1.5 Å. This structure reveals differences in the mobility of specific loops when compared to other FPRs, probably unrelated to the hydride transfer process, which contributes to explaining the structural and functional divergence between the subclass I FPRs. Interactions of the C-terminus of the enzyme with the phosphoadenosine of the cofactor FAD limit its mobility, thus affecting the entrance of nicotinamide into the active site. This structure opens the possibility of rationally designing drugs against the X. axonopodis pv. citri phytopathogen.Ítem Acceso Abierto Broadening the spectrum of ivermectin: its effect on Trypanosoma cruzi and related trypanosomatids(Frontiers Media, 2022-07-28) Fraccaroli, Laura; Ruiz, María Daniela; Perdomo, Virginia Gabriela; Clausi, Agustina Nicole; Balcazar, Darío Emmanuel; Larocca, Luciana; Carrillo, CarolinaChagas disease is an endemic American parasitosis, caused by Trypanosoma cruzi. The current therapies, benznidazole (BZN) and nifurtimox (NFX), show limited efficacy and multiple side effects. Thus, there is a need to develop new trypanocidal strategies. Ivermectin (IVM) is a broad-spectrum antiparasitic drug with low human and veterinary toxicity with effects against T. brucei and Leishmania spp. Considering this and its relatively low cost, we evaluate IVM as a potential repurposed trypanocidal drug on T. cruzi and other trypanosomatids. We found that IVM affected, in a dose-dependent manner, the proliferation of T. cruzi epimastigotes as well as the amastigotes and trypomastigotes survival. The Selectivity Index for the amastigote stage with respect to Vero cells was 12. The IVM effect was also observed in Phytomonas jma 066 and Leishmania mexicana proliferation but not in Crithidia fasciculata. On the epimastigote stage, the IVM effect was trypanostatic at 50 μM but trypanocidal at 100 μM. The assays of the drug combinations of IVM with BNZ or NFX showed mainly additive effects among combinations. In silico studies showed that classical structures belonging to glutamate-gated Cl channels, the most common IVM target, are absent in kinetoplastids. However, we found in the studied trypanosomatid genomes one copy for putative IMPα and IMPβ, potential targets for IVM. The putative IMPα genes (with 76% similarity) showed conserved Armadillo domains but lacked the canonical IMPβ binding sequence. These results allowed us to propose a novel molecular target in T. cruzi and suggest IVM as a good candidate for drug repurposing in the Chagas disease context.Ítem Acceso Abierto Crambescin C1 acts as a possible substrate of iNOS and eNOS increasing nitric oxide production and inducing in vivo hypotensive effect(Frontiers Media, 2021-07-07) Rubiolo, Juan Andrés; Lence, Emilio; González Bello, Concepción; Roel, María; Gil Longo, José; Campos Toimil, Manuel; Ternon, Eva; Thomas, Olivier P.; González Cantalapiedra, Antonio; López Alonso, Henar; Vieytes, Mercedes R.; Botana, Luis M.Crambescins are guanidine alkaloids from the sponge Crambe crambe. Crambescin C1 (CC) induces metallothionein genes and nitric oxide (NO) is one of the triggers. We studied and compared the in vitro, in vivo, and in silico effects of some crambescine A and C analogs. HepG2 gene expression was analyzed using microarrays. Vasodilation was studied in rat aortic rings. In vivo hypotensive effect was directly measured in anesthetized rats. The targets of crambescines were studied in silico. CC and homo-crambescine C1 (HCC), but not crambescine A1 (CA), induced metallothioneins transcripts. CC increased NO production in HepG2 cells. In isolated rat aortic rings, CC and HCC induced an endothelium-dependent relaxation related to eNOS activation and an endothelium-independent relaxation related to iNOS activation, hence both compounds increase NO and reduce vascular tone. In silico analysis also points to eNOS and iNOS as targets of Crambescin C1 and source of NO increment. CC effect is mediated through crambescin binding to the active site of eNOS and iNOS. CC docking studies in iNOS and eNOS active site revealed hydrogen bonding of the hydroxylated chain with residues Glu377 and Glu361, involved in the substrate recognition, and explains its higher binding affinity than CA. The later interaction and the extra polar contacts with its pyrimidine moiety, absent in the endogenous substrate, explain its role as exogenous substrate of NOSs and NO production. Our results suggest that CC serve as a basis to develop new useful drugs when bioavailability of NO is perturbed.