(FBIOyF) Departamento de Ciencias Biológicas - Artículo de Revista

URI permanente para esta colección

Examinar

Envíos recientes

Mostrando 1 - 20 de 70
  • ÍtemAcceso Abierto
    Unravelling early events in the Taphrina deformans–Prunus persica interaction: an insight into the differential responses in resistant and susceptible genotypes
    (Wiley, 2017-07-12) Svetaz, Laura Andrea; Bustamante, Claudia Anabel; Goldy, Camila; Rivero, Nery Alberto; Müller, Gabriela Leticia; Valentini, Gabriel Hugo; Fernie, Alisdair R.; Drincovich, María Fabiana; Lara, María Valeria; https://orcid.org/0000-0003-4914-0242; Dr. Bellini, E.: provide P. persica selections DOFI-84.364.089 and DOFI-84.364.060; Dr. Giordani, E.: provide P. persica selections DOFI-84.364.089 and DOFI-84.364.060
    Leaf peach curl is a devastating disease affecting leaves, flowers and fruits, caused by the dimorphic fungus Taphrina deformans. To gain insight into the mechanisms of fungus pathogenesis and plant responses, leaves of a resistant and two susceptible Prunus persica genotypes were inoculated with blastospores (yeast), and the infection was monitored during 120 h post inoculation (h.p.i.). Fungal dimorphism to the filamentous form and induction of reactive oxygen species (ROS), callose synthesis, cell death and defence compound production were observed independently of the genotype. Fungal load significantly decreased after 120 h.p.i. in the resistant genotype, while the pathogen tended to grow in the susceptible genotypes. Metabolic profiling revealed a biphasic re-programming of plant tissue in susceptible genotypes, with an initial stage co-incident with the yeast form of the fungus and a second when the hypha is developed. Transcriptional analysis of PRs and plant hormone-related genes indicated that pathogenesis-related (PR) proteins are involved in P. persica defence responses against T. deformans and that salicylic acid is induced in the resistant genotype. Conducted experiments allowed the elucidation of common and differential responses in susceptible versus resistant genotypes and thus allow us to construct a picture of early events during T. deformans infection.
  • ÍtemAcceso Abierto
    G-quadruplexes as novel cis-elements controlling transcription during embryonic development
    (Oxford University Press, 2016-01-14) David, Aldana P.; Margarit, Ezequiel; Domizi, Pablo; Banchio, Claudia; Armas, Pablo; Calcaterra, Nora B.
    G-quadruplexes are dynamic structures folded in G-rich single-stranded DNA regions. These structures have been recognized as a potential nucleic acid based mechanism for regulating multiple cellular processes such as replication, transcription and genomic maintenance. So far, their transcriptional role in vivo during vertebrate embryonic development has not yet been addressed. Here, we performed an in silico search to find conserved putative G-quadruplex sequences (PQSs) within proximal promoter regions of human, mouse and zebrafish developmental genes. Among the PQSs able to fold in vitro as G-quadruplex, those present in nog3, col2a1 and fzd5 promoters were selected for further studies. In cellulo studies revealed that the selected G-quadruplexes affected the transcription of luciferase controlled by the SV40 nonrelated promoter. G-quadruplex disruption in vivo by microinjection in zebrafish embryos of either small ligands or DNA oligonucleotides complementary to the selected PQSs resulted in lower transcription of the targeted genes. Moreover, zebrafish embryos and larvae phenotypes caused by the presence of complementary oligonucleotides fully resembled those ones reported for nog3, col2a1 and fzd5 morphants. To our knowledge, this is the first work revealing in vivo the role of conserved G-quadruplexes in the embryonic development, one of the most regulated processes of the vertebrates biology.
  • ÍtemAcceso Abierto
    Beyond the binding site: In vivo Identification of tbx2, smarca5 and wnt5b as molecular targets of CNBP during embryonic development
    (Public Library of Science, 2013-05-07) Armas, Pablo; Margarit, Ezequiel; Mouguelar, Valeria; Allende, Miguel L.; Calcaterra, Nora B.
    CNBP is a nucleic acid chaperone implicated in vertebrate craniofacial development, as well as in myotonic dystrophy type 2 (DM2) and sporadic inclusion body myositis (sIBM) human muscle diseases. CNBP is highly conserved among vertebrates and has been implicated in transcriptional regulation; however, its DNA binding sites and molecular targets remain elusive. The main goal of this work was to identify CNBP DNA binding sites that might reveal target genes involved in vertebrate embryonic development. To accomplish this, we used a recently described yeast one-hybrid assay to identify DNA sequences bound in vivo by CNBP. Bioinformatic analyses revealed that these sequences are G-enriched and show high frequency of putative G-quadruplex DNA secondary structure. Moreover, an in silico approach enabled us to establish the CNBP DNA-binding site and to predict CNBP putative targets based on gene ontology terms and synexpression with CNBP. The direct interaction between CNBP and candidate genes was proved by EMSA and ChIP assays. Besides, the role of CNBP upon the identified genes was validated in loss-of-function experiments in developing zebrafish. We successfully confirmed that CNBP up-regulates tbx2b and smarca5, and down-regulates wnt5b gene expression. The highly stringent strategy used in this work allowed us to identify new CNBP target genes functionally important in different contexts of vertebrate embryonic development. Furthermore, it represents a novel approach toward understanding the biological function and regulatory networks involving CNBP in the biology of vertebrates.
  • ÍtemAcceso Abierto
    Gene expression changes throughout the life cycle allow a bacterial plant pathogen to persist in diverse environmental habitats
    (Public Library of Science, 2023-12-19) De Pedro-Jové, Roger; Corral, Jordi; Rocafort, Mercedes; Puigvert, Marina; Azam, Fàtima Latif; Vandecaveye, Agustina; Macho, Alberto P.; Balsalobre , Carlos; Coll, Núria S.; Orellano, Elena G.; Valls, Marc; https://orcid.org/0000-0003-2312-0091
    Bacterial pathogens exhibit a remarkable ability to persist and thrive in diverse ecological niches. Understanding the mechanisms enabling their transition between habitats is crucial to control dissemination and potential disease outbreaks. Here, we use Ralstonia solanacearum, the causing agent of the bacterial wilt disease, as a model to investigate pathogen adaptation to water and soil, two environments that act as bacterial reservoirs, and compare this information with gene expression in planta. Gene expression in water resembled that observed during late xylem colonization, with an intriguing induction of the type 3 secretion system (T3SS). Alkaline pH and nutrient scarcity—conditions also encountered during late infection stages–were identified as the triggers for this T3SS induction. In the soil environment, R. solanacearum upregulated stress-responses and genes for the use of alternate carbon sources, such as phenylacetate catabolism and the glyoxylate cycle, and downregulated virulence-associated genes. We proved through gain- and loss-of-function experiments that genes associated with the oxidative stress response, such as the regulator OxyR and the catalase KatG, are key for bacterial survival in soil, as their deletion cause a decrease in culturability associated with a premature induction of the viable but non culturable state (VBNC). This work identifies essential factors necessary for R. solanacearum to complete its life cycle and is the first comprehensive gene expression analysis in all environments occupied by a bacterial plant pathogen, providing valuable insights into its biology and adaptation to unexplored habitats.
  • ÍtemAcceso Abierto
    Engineering a bifunctional copper site in the cupredoxin fold by loop-directed mutagenesis
    (Royal Society of Chemistry, 2018-06-28) Espinoza Cara, Andrés; Zitare, Ulises A.; Alvarez Paggi , Damián; Klinke, Sebastián; Otero, Lisandro H.; Murgida, Daniel H.; Vila, Alejandro J.; https://orcid.org/0000-0003-0500-4513; https://orcid.org/0000-0003-0248-6916; https://orcid.org/0000-0002-1507-9685; https://orcid.org/0000-0002-8777-0870; https://orcid.org/0000-0002-5448-5483; https://orcid.org/0000-0001-5173-0183; https://orcid.org/0000-0002-7978-3233
    Copper sites in proteins are designed to perform either electron transfer or redox catalysis. Type 1 and CuA sites are electron transfer hubs bound to a rigid protein fold that prevents binding of exogenous ligands and side reactions. Here we report the engineering of two Type 1 sites by loop-directed mutagenesis within a CuA scaffold with unique electronic structures and functional features. A copper–thioether axial bond shorter than the copper–thiolate bond is responsible for the electronic structure features, in contrast to all other natural or chimeric sites where the copper thiolate bond is short. These sites display highly unusual features, such as: (1) a high reduction potential despite a strong interaction with the axial ligand, which we attribute to changes in the hydrogen bond network and (2) the ability to bind exogenous ligands such as imidazole and azide. This strategy widens the possibility of using natural protein scaffolds with functional features not present in nature.
  • ÍtemAcceso Abierto
    Optimization of protease production and sequence analysis of the purified enzyme from the cold adapted yeast Rhodotorula mucilaginosa CBMAI 1528
    (Elsevier, 2020-10-21) Lario, Luciana Daniela; Pillaca-Pullo, Omar Santiago; Sette, Lara Durães; Converti, Attilio; Casati, Paula; Spampinato, Claudia P.; Pessoa, Adalberto
    Enzymes from cold-adapted microorganisms are of high interest to industries due to their high activity at low and mild temperatures, which makes them suitable for their use in several processes that either require a supply of exogenous energy or involve the use of heat labile products. In this work, the protease production by the strain Rhodotorula mucilaginosa CBMAI 1528, previously isolated from the Antarctic continent, was optimized, and the purified enzyme analyzed. It was found that protease production was dependent on culture medium composition and growth temperature, being 20 C and a culture medium containing both glucose and casein peptone (20 and 10 g/L, respectively) the optimal growing conditions in batch as well as in bioreactor. Moreover, mass spectrometry analysis revealed that the enzyme under study has a 100 % sequence identity with the deduced amino acid sequence of a putative aspartic protease from Rhodotorula sp. JG-1b (protein ID: KWU42276.1). This result was confirmed by the decrease of 95 % proteolytic activity by pepstatin A, a specific inhibitor of aspartic proteases. We propose that the enzyme reported here could be Rodothorulapepsin, a protein characterized in 1972 that did not have an associated sequence to date and has been classified as an orphan enzyme.
  • ÍtemAcceso Abierto
    Transcriptional and metabolic profiling of potato plants expressing a plastid-targeted electron shuttle reveal modulation of genes associated to drought tolerance by chloroplast redox poise
    (MDPI, 2020-09-29) Pierella Karlusich, Juan J.; Arce, Rocío C.; Shahinnia, Fahimeh; Sonnewald, Sophia; Sonnewald, Uwe; Zurbriggen, Matias D.; Hajirezaei, Mohammad-Reza; Carrillo, Néstor; https://orcid.org/0000-0003-1739-4424; https://orcid.org/0000-0001-6549-6316; https://orcid.org/0000-0001-8236-7647; https://orcid.org/0000-0002-9185-6255
    Water limitation represents the main environmental constraint affecting crop yield worldwide. Photosynthesis is a primary drought target, resulting in over-reduction of the photosynthetic electron transport chain and increased production of reactive oxygen species in plastids. Manipulation of chloroplast electron distribution by introducing alternative electron transport sinks has been shown to increase plant tolerance to multiple environmental challenges including hydric stress, suggesting that a similar strategy could be used to improve drought tolerance in crops. We show herein that the expression of the cyanobacterial electron shuttle flavodoxin in potato chloroplasts protected photosynthetic activities even at a pre-symptomatic stage of drought. Transcriptional and metabolic profiling revealed an attenuated response to the adverse condition in flavodoxin-expressing plants, correlating with their increased stress tolerance. Interestingly, 5–6% of leaf-expressed genes were affected by flavodoxin in the absence of drought, representing pathways modulated by chloroplast redox status during normal growth. About 300 of these genes potentially contribute to stress acclimation as their modulation by flavodoxin proceeds in the same direction as their drought response in wild-type plants. Tuber yield losses under chronic water limitation were mitigated in flavodoxin-expressing plants, indicating that the flavoprotein has the potential to improve major agronomic traits in potato.
  • ÍtemAcceso Abierto
    Centrosomal AKAP350 modulates the G1/S transition
    (Landes Bioscience, 2013-10-10) Mattaloni, Stella M.; Ferretti, Anabela Cecilia; Tonucci, Facundo Mauro; Favre, Cristian; Goldenring, James R.; Larocca, María Cecilia
    AKAP350 (AKAP450/AKAP9/CG-NAP) is an A-kinase anchoring protein, which recruits multiple signaling proteins to the Golgi apparatus and the centrosomes. Several proteins recruited to the centrosomes by this scaffold participatein the regulation of the cell cycle. Previous studies indicated that AKAP350 participates in centrosome duplication. In the present study we specifically assessed the role of AKAP350 in the progression of the cell cycle. Our results showed that interference with AKAP350 expression inhibits G1/S transition, decreasing the initiation of both DNA synthesis and centrosome duplication. We identified an AKAP350 carboxyl-terminal domain (AKAP350CTD), which contained the centrosomal targeting domain of AKAP350 and induced the initiation of DNA synthesis. Nevertheless, AKAP350CTD expression did not induce centrosomal duplication. AKAP350CTD partially delocalized endogenous AKAP350 from the centrosomes, but increased the centrosomal levels of the cyclin-dependent kinase 2 (Cdk2). Accordingly, the expression of this AKAP350 domain increased the endogenous phosphorylation of nucleophosmin by Cdk2, which occurs at the G1 /S transition and is a marker of the centrosomal activity of the cyclin E-Cdk2 complex. Cdk2 recruitment to the centrosomes is a necessary event for the development of the G1/S transition. Altogether, our results indicate that AKAP350 facilitates the initiation of DNA synthesis by scaffolding Cdk2 to the centrosomes, and enabling its specific activity at this organelle. Although this mechanism could also be involved in AKAP350-dependent modulation of centrosomal duplication, it is not sufficient to account for this process.
  • ÍtemAcceso Abierto
    Genetic variations in G-quadruplex forming sequences affect the transcription of human disease-related genes
    (Oxford University Press, 2023-11-01) Lorenzatti, Agustín; Piga, Ernesto José; Gismondi, Mauro; Binolfi, Andrés; Margarit, Ezequiel; Calcaterra, Nora B.; Armas, Pablo
    Guanine-rich DNA strands can fold into non-canonical four-stranded secondary structures named G-quadruplexes (G4s). G4s folded in proximal promoter regions (PPR) are associated either with positive or negative transcriptional regulation. Given that single nucleotide variants (SNVs) affecting G4 folding (G4-Vars) may alter gene transcription, and that SNVs are associated with the human diseases’ onset, we undertook a novel comprehensive study of the G4-Vars genome-wide (G4-variome) to find disease-associated G4-Vars located into PPRs. We developed a bioinformatics strategy to find disease-related SNVs located into PPRs simultaneously overlapping with putative G4-forming sequences (PQSs). We studied five G4-Vars disturbing in vitro the folding and stability of the G4s located into PPRs, which had been formerly associated with sporadic Alzheimer’s disease (GRIN2B), a severe familiar coagulopathy (F7), atopic dermatitis (CSF2), myocardial infarction (SIRT1) and deafness (LHFPL5). Results obtained in cultured cells for these five G4-Vars suggest that the changes in the G4s affect the transcription, potentially contributing to the development of the mentioned diseases. Collectively, data reinforce the general idea that G4-Vars may impact on the different susceptibilities to human genetic diseases’ onset, and could be novel targets for diagnosis and drug design in precision medicine.
  • ÍtemAcceso Abierto
    Plastid-targeted Cyanobacterial Flavodiiron proteins maintain carbohydrate turnover and enhance drought stress tolerance in barley
    (Frontiers Media, 2021-02-13) Shahinnia, Fahimeh; Tula, Suresh; Hensel, Goetz; Reiahisamani, Narges; Nasr, Nasrin; Kumlehn, Jochen; Gómez, Rodrigo Lionel; Lodeyro, Anabella F.; Carrillo, Néstor; Hajirezaei, Mohammad-Reza
    Chloroplasts, the sites of photosynthesis in higher plants, have evolved several means to tolerate short episodes of drought stress through biosynthesis of diverse metabolites essential for plant function, but these become ineffective when the duration of the stress is prolonged. Cyanobacteria are the closest bacterial homologs of plastids with two photosystems to perform photosynthesis and to evolve oxygen as a byproduct. The presence of Flv genes encoding flavodiiron proteins has been shown to enhance stress tolerance in cyanobacteria. In an attempt to support the growth of plants exposed to drought, the Synechocystis genes Flv1 and Flv3 were expressed in barley with their products being targeted to the chloroplasts. The heterologous expression of both Flv1 and Flv3 accelerated days to heading, increased biomass, promoted the number of spikes and grains per plant, and improved the total grain weight per plant of transgenic lines exposed to drought. Improved growth correlated with enhanced availability of soluble sugars, a higher turnover of amino acids and the accumulation of lower levels of proline in the leaf. Flv1 and Flv3 maintained the energy status of the leaves in the stressed plants by converting sucrose to glucose and fructose, immediate precursors for energy production to support plant growth under drought. The results suggest that sugars and amino acids play a fundamental role in the maintenance of the energy status and metabolic activity to ensure growth and survival under stress conditions, that is, water limitation in this particular case. Engineering chloroplasts by Flv genes into the plant genome, therefore, has the potential to improve plant productivity wherever drought stress represents a significant production constraint.
  • ÍtemAcceso Abierto
    Recombinant protein expression in microbial systems
    (Frontiers, 2014-07-08) Rosano, Germán L.; Ceccarelli, Eduardo Augusto
    The emergence of recombinant DNA technology during the early 70's set a revolution in molecular biology. This set of techniques was strengthened even further later on with the introduction of the polymerase chain reaction and allowed scientists to explore and understand essential life processes in an easy and straightforward way. It also marked the birth of the modern biotech industry [...]
  • ÍtemAcceso Abierto
    Akap350 recruits Eb1 to the spindle poles, ensuring proper spindle orientation and lumen formation in 3d epithelial cell cultures
    (Springer Nature, 2017-11-02) Almada, Evangelina; Tonucci, Facundo Mauro; Hidalgo, Florencia; Ferretti, Anabela Cecilia; Pariani, Alejandro Pedro; Favre, Cristian; Larocca, María Cecilia; Ibarra, Solange; Vena, Rodrigo; Girardini, Javier; Kierbel, Arlinet
    The organization of epithelial cells to form hollow organs with a single lumen requires the accurate three-dimensional arrangement of cell divisions. Mitotic spindle orientation is defined by signaling pathways that provide molecular links between specific spots at the cell cortex and astral microtubules, which have not been fully elucidated. AKAP350 is a centrosomal/Golgi scaffold protein, implicated in the regulation of microtubule dynamics. Using 3D epithelial cell cultures, we found that cells with decreased AKAP350 expression (AKAP350KD) formed polarized cysts with abnormal lumen morphology. Analysis of mitotic cells in AKAP350KD cysts indicated defective spindle alignment. We established that AKAP350 interacts with EB1, a microtubule associated protein that regulates spindle orientation, at the spindle poles. Decrease of AKAP350 expression lead to a significant reduction of EB1 levels at spindle poles and astral microtubules. Conversely, overexpression of EB1 rescued the defective spindle orientation induced by deficient AKAP350 expression. The specific delocalization of the AKAP350/EB1complex from the centrosome decreased EB1 levels at astral microtubules and lead to the formation of 3D-organotypic structures which resembled AKAP350KD cysts. We conclude that AKAP350 recruits EB1 to the spindle poles, ensuring EB1 presence at astral microtubules and proper spindle orientation during epithelial morphogenesis.
  • ÍtemAcceso Abierto
    Crystal structure of the FAD-containing ferredoxin-NADP+ reductase from the plant pathogen Xanthomonas axonopodis pv. citri
    (Hindawi, 2013-08-01) Tondo, María Laura; Hurtado-Guerrero, Ramón; Ceccarelli, Eduardo Augusto; Medina, Milagros; Orellano, Elena G.; Martínez-Júlvez, Marta; https://orcid.org/0000-0002-3122-9401
    We have solved the structure of ferredoxin-NADP(H) reductase, FPR, from the plant pathogen Xanthomonas axonopodis pv. citri, responsible for citrus canker, at a resolution of 1.5 Å. This structure reveals differences in the mobility of specific loops when compared to other FPRs, probably unrelated to the hydride transfer process, which contributes to explaining the structural and functional divergence between the subclass I FPRs. Interactions of the C-terminus of the enzyme with the phosphoadenosine of the cofactor FAD limit its mobility, thus affecting the entrance of nicotinamide into the active site. This structure opens the possibility of rationally designing drugs against the X. axonopodis pv. citri phytopathogen.
  • ÍtemAcceso Abierto
    Broadening the spectrum of ivermectin: its effect on Trypanosoma cruzi and related trypanosomatids
    (Frontiers Media, 2022-07-28) Fraccaroli, Laura; Ruiz, María Daniela; Perdomo, Virginia Gabriela; Clausi, Agustina Nicole; Balcazar, Darío Emmanuel; Larocca, Luciana; Carrillo, Carolina
    Chagas disease is an endemic American parasitosis, caused by Trypanosoma cruzi. The current therapies, benznidazole (BZN) and nifurtimox (NFX), show limited efficacy and multiple side effects. Thus, there is a need to develop new trypanocidal strategies. Ivermectin (IVM) is a broad-spectrum antiparasitic drug with low human and veterinary toxicity with effects against T. brucei and Leishmania spp. Considering this and its relatively low cost, we evaluate IVM as a potential repurposed trypanocidal drug on T. cruzi and other trypanosomatids. We found that IVM affected, in a dose-dependent manner, the proliferation of T. cruzi epimastigotes as well as the amastigotes and trypomastigotes survival. The Selectivity Index for the amastigote stage with respect to Vero cells was 12. The IVM effect was also observed in Phytomonas jma 066 and Leishmania mexicana proliferation but not in Crithidia fasciculata. On the epimastigote stage, the IVM effect was trypanostatic at 50 μM but trypanocidal at 100 μM. The assays of the drug combinations of IVM with BNZ or NFX showed mainly additive effects among combinations. In silico studies showed that classical structures belonging to glutamate-gated Cl channels, the most common IVM target, are absent in kinetoplastids. However, we found in the studied trypanosomatid genomes one copy for putative IMPα and IMPβ, potential targets for IVM. The putative IMPα genes (with 76% similarity) showed conserved Armadillo domains but lacked the canonical IMPβ binding sequence. These results allowed us to propose a novel molecular target in T. cruzi and suggest IVM as a good candidate for drug repurposing in the Chagas disease context.
  • ÍtemAcceso Abierto
    Crambescin C1 acts as a possible substrate of iNOS and eNOS increasing nitric oxide production and inducing in vivo hypotensive effect
    (Frontiers Media, 2021-07-07) Rubiolo, Juan Andrés; Lence, Emilio; González Bello, Concepción; Roel, María; Gil Longo, José; Campos Toimil, Manuel; Ternon, Eva; Thomas, Olivier P.; González Cantalapiedra, Antonio; López Alonso, Henar; Vieytes, Mercedes R.; Botana, Luis M.
    Crambescins are guanidine alkaloids from the sponge Crambe crambe. Crambescin C1 (CC) induces metallothionein genes and nitric oxide (NO) is one of the triggers. We studied and compared the in vitro, in vivo, and in silico effects of some crambescine A and C analogs. HepG2 gene expression was analyzed using microarrays. Vasodilation was studied in rat aortic rings. In vivo hypotensive effect was directly measured in anesthetized rats. The targets of crambescines were studied in silico. CC and homo-crambescine C1 (HCC), but not crambescine A1 (CA), induced metallothioneins transcripts. CC increased NO production in HepG2 cells. In isolated rat aortic rings, CC and HCC induced an endothelium-dependent relaxation related to eNOS activation and an endothelium-independent relaxation related to iNOS activation, hence both compounds increase NO and reduce vascular tone. In silico analysis also points to eNOS and iNOS as targets of Crambescin C1 and source of NO increment. CC effect is mediated through crambescin binding to the active site of eNOS and iNOS. CC docking studies in iNOS and eNOS active site revealed hydrogen bonding of the hydroxylated chain with residues Glu377 and Glu361, involved in the substrate recognition, and explains its higher binding affinity than CA. The later interaction and the extra polar contacts with its pyrimidine moiety, absent in the endogenous substrate, explain its role as exogenous substrate of NOSs and NO production. Our results suggest that CC serve as a basis to develop new useful drugs when bioavailability of NO is perturbed.
  • ÍtemAcceso Abierto
    Molecular fingerprints to identify Candida species
    (Hindawi, 2013-06-17) Spampinato, Claudia P.; Leonardi, Darío
    A wide range of molecular techniques have been developed for genotyping Candida species. Among them, multilocus sequence typing (MLST) and microsatellite length polymorphisms (MLP) analysis have recently emerged. MLST relies on DNA sequences of internal regions of various independent housekeeping genes, while MLP identifies microsatellite instability. Both methods generate unambiguous and highly reproducible data. Here, we review the results achieved by using these two techniques and also provide a brief overview of a new method based on high-resolution DNA melting (HRM). This method identifies sequence differences by subtle deviations in sample melting profiles in the presence of saturating fluorescent DNA binding dyes
  • ÍtemAcceso Abierto
    Flavoprotein monooxygenases for oxidative biocatalysis: recombinant expression in microbial hosts and applications
    (Frontiers Media, 2014-02-06) Ceccoli, Romina Denis; Bianchi, Dario A.; Rial, Daniela V.
    External flavoprotein monooxygenases comprise a group of flavin-dependent oxidoreductases that catalyze the insertion of one atom of molecular oxygen into an organic substrate and the second atom is reduced to water. These enzymes are involved in a great number of metabolic pathways both in prokaryotes and eukaryotes. Flavoprotein monooxygenases have attracted the attention of researchers for several decades and the advent of recombinant DNA technology caused a great progress in the field. These enzymes are subjected to detailed biochemical and structural characterization and some of them are also regarded as appealing oxidative biocatalysts for the production of fine chemicals and valuable intermediates toward active pharmaceutical ingredients due to their high chemo-, stereo-, and regioselectivity. Here, we review the most representative reactions catalyzed both in vivo and in vitro by prototype flavoprotein monooxygenases, highlighting the strategies employed to produce them recombinantly, to enhance the yield of soluble proteins, and to improve cofactor regeneration in order to obtain versatile biocatalysts. Although we describe the most outstanding features of flavoprotein monooxygenases, we mainly focus on enzymes that were cloned, expressed and used for biocatalysis during the last years.
  • ÍtemAcceso Abierto
    Sugar metabolism in stone fruit: source-sink relationships and environmental and agronomical effects
    (Frontiers Media, 2023-11-13) Falchi, Rachele; Bonghi, Claudio; Drincovich, María Fabiana; Famiani, Franco; Lara, María Valeria; Walker, Robert P.; Vizzotto, Giannina
    The partitioning of assimilates in fruits, which are economically important sink organs, is ruled by different physiological processes and affected by both environmental and agronomical factors. The bulk of the water and solutes, required for growth, is imported into fruits and seeds through xylem and phloem. In the stone fruits, five vascular bundles enter the base of the fruit, then dividing to supply either the flesh or the seed. The main sugars accumulated in stone fruits include fructose, glucose, and sucrose, along with other minor saccharides. The mechanisms of phloem loading in these fruit species have not been fully elucidated yet, but the available data hint either an apoplastic or a symplastic type or possibly a combination of both, depending on the species and the sugar considered. Similarly, phloem unloading mechanisms, elucidated for a small number of species, depend on genotype and developmental stage. Remarkably, key enzymes and transporters involved in the main sugars-conversion and transport pathways have received considerable attention. In stone fruit trees, the presence of an elevated number of fruits alters the source-sink balance, with a consequent intensification of competition among them and between vegetative and reproductive growth. The main environmental factors affecting this balance and the agronomical/artificial manipulations of source-sink relationships to achieve adequate fruit production and quality are reviewed.
  • ÍtemAcceso Abierto
    Candida infections, causes, targets, and resistance mechanisms: traditional and alternative antifungal agents
    (Hindawi, 2013) Spampinato, Claudia P.; Leonardi, Darío; https://orcid.org/0000-0003-2292-3570
    The genus Candida includes about 200 different species, but only a few species are human opportunistic pathogens and cause infections when the host becomes debilitated or immunocompromised.Candida infections can be superficial or invasive. Superficial infections often affect the skin or mucous membranes and can be treated successfully with topical antifungal drugs. However, invasive fungal infections are often life-threatening, probably due to inefficient diagnostic methods and inappropriate initial antifungal therapies. Here, we briefly review our current knowledge of pathogenic species of the genus Candida and yeast infection causes and then focus on current antifungal drugs and resistance mechanisms. An overview of new therapeutic alternatives for the treatment of Candida infections is also provided.
  • ÍtemAcceso Abierto
    Stone fruit as biofactories of phytochemicals with potential roles in human nutrition and health
    (Frontiers Media, 2020-09-02) Lara, María Valeria; Bonghi, Claudio; Famiani, Franco; Vizzotto, Giannina; Walker, Robert P.; Drincovich, María Fabiana
    Comprehensive knowledge of the critical properties of the active pharmaceutical ingredients is a requirement within the modern concept of quality. Praziquantel hemihydrate (HH) and monohydrate (MH) are new solid forms of this antihelmintic agent, which have better solubility properties than the commercial anhydrous solid form (polymorph A). The thermal stability of the hydrates was evaluated, aiming to understand any possible transformation (amorphization, change to a less soluble form). Therefore, HH and MH were prepared along with the related anhydrous solid forms A and B, and characterized employing solid-state nuclear magnetic resonance, powder X-ray diffraction, mid and near infrared spectroscopy, thermal methods and the intrinsic dissolution rate. The transformations of HH and MH under thermal stress conditions were monitored through a variable temperature infrared spectroscopy approach, assisted by multivariate curve resolution with alternating least squares (MCR-ALS), finding that HH undergoes a two-step transformation (HH→B→A) to form A, whereas MH dehydrates directly into form A. This was further confirmed by conventional calorimetric methods (differential scanning calorimetry and thermogravimetry) and powder X-ray diffractometry. The impact of changes in the stressed solid forms and their dissolution rates was also assessed. Significant differences in dissolution performance were found regarding the solid forms produced as a consequence of thermally-induced dehydration.