En este trabajo se aborda el problema de la robustez de la función de autocorrelación muestral, y se proponen dos estimadores: uno basado en un estimador robusto de escala y la función de autocorrelación truncada. Se realiza un estudio de simulaciones para investigar y comparar el comportamiento del estimador clásico -FACM- y estos dos nuevos estimadores en procesos contaminados con valores atípicos. Se observa que la FACM no es resistente a la presencia de observaciones extremas y se confirma la robustez de la FACMR en situaciones con outliers de diferentes magnitudes. Por lo tanto, dado que en la práctica se suele desconocer la existencia de valores extremos, se aconseja calcular conjuntamente el estimador clásico y los estimadores robustos de la función de autocorrelación. Si dichas estimaciones son similares, se puede asumir que el efecto de los valores atípicos es insignificante. Por el contrario, si son significativamente diferentes, se debe actuar con cuidado. Queda pendiente el análisis del desempeño de estos estimadores en presencia de múltiples datos atípicos en la serie y en el caso de procesos con estacionalidad.