Providing an additional electron sink by the introduction of cyanobacterial Ffavodiirons enhances growth of A. thaliana under various light intensities

dc.citation.titleFrontiers in Plant Sciencees
dc.citation.volume11es
dc.creatorTula, Suresh
dc.creatorShahinnia, Fahimeh
dc.creatorMelzer, Michael
dc.creatorRutten, Twan
dc.creatorGómez, Rodrigo Lionel
dc.creatorLodeyro, Anabella F.
dc.creatorWirén, Nicolaus von
dc.creatorCarrillo, Néstor
dc.creatorHajirezaei, Mohammad-Reza
dc.date.accessioned2020-08-27T12:56:08Z
dc.date.available2020-08-27T12:56:08Z
dc.date.issued2020-06-25
dc.descriptionThe ability of plants to maintain photosynthesis in a dynamically changing environment is of central importance for their growth. As the photosynthetic machinery is a sensitive and early target of adverse environmental conditions as those typically found in the field, photosynthetic efficiency is not always optimal. Cyanobacteria, algae, mosses, liverworts and gymnosperms produce flavodiiron proteins (Flvs), a class of electron sinks not represented in angiosperms; these proteins act to mitigate the photoinhibition of photosystem I under high or fluctuating light. Here, genes specifying two cyanobacterial Flvs have been expressed in the chloroplasts of Arabidopsis thaliana in an attempt to improve plant growth. Co-expression of Flv1 and Flv3 enhanced the efficiency of light utilization, boosting the plant’s capacity to accumulate biomass as the growth light intensity was raised. The Flv1/Flv3 transgenics displayed an increased production of ATP, an acceleration of carbohydrate metabolism and a more pronounced partitioning of sucrose into starch. The results suggest that Flvs are able to establish an efficient electron sink downstream of PSI, thereby ensuring efficient photosynthetic electron transport at moderate to high light intensities. The expression of Flvs thus acts to both protect photosynthesis and to control the ATP/NADPH ratio; together, their presence is beneficial for the plant’s growth potential.es
dc.description.filFil: Tula, Suresh. Leibniz Institute of Plant Genetics and Crop Plant Research. Department of Physiology and Cell Biology. Molecular Plant Nutrition; Germany.es
dc.description.filFil: Shahinnia, Fahimeh. Leibniz Institute of Plant Genetics and Crop Plant Research. Department of Physiology and Cell Biology. Molecular Plant Nutrition; Germany.es
dc.description.filFil: Melzer, Michael. Leibniz Institute of Plant Genetics and Crop Plant Research. Department of Physiology and Cell Biology. Molecular Plant Nutrition; Germany.es
dc.description.filFil: Rutten, Twan. Leibniz Institute of Plant Genetics and Crop Plant Research. Department of Physiology and Cell Biology. Molecular Plant Nutrition; Germany.es
dc.description.filFil: Gómez, Rodrigo Lionel. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET); Argentina.es
dc.description.filFil: Lodeyro, Anabella F. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET); Argentina.es
dc.description.filFil: Wirén, Nicolaus von. Leibniz Institute of Plant Genetics and Crop Plant Research. Department of Physiology and Cell Biology. Molecular Plant Nutrition; Germany.es
dc.description.filFil: Carrillo, Néstor. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET); Argentina.es
dc.description.filFil: Hajirezaei, Mohammad-Reza. Leibniz Institute of Plant Genetics and Crop Plant Research. Department of Physiology and Cell Biology. Molecular Plant Nutrition; Germany.es
dc.description.sponsorshipFederal Ministry of Education and Research (BMBF): FKZ 031A280es
dc.description.sponsorshipAgencia Nacional de Promoción Científica y Tecnológica (ANPCyT): PICT 2017-3080es
dc.description.sponsorshipAgencia Nacional de Promoción Científica y Tecnológica (ANPCyT): PICT 2015-3828es
dc.formatapplication/pdf
dc.format.extent1-12es
dc.identifier.issn1664-462Xes
dc.identifier.urihttp://hdl.handle.net/2133/18755
dc.language.isoenges
dc.publisherFrontiers Mediaes
dc.relation.publisherversionhttps://www.frontiersin.org/articles/10.3389/fpls.2020.00902/full#fun1es
dc.relation.publisherversionhttps://doi.org/10.3389/fpls.2020.00902es
dc.rightsopenAccesses
dc.rights.holderTula, Sureshes
dc.rights.holderShahinnia, Fahimehes
dc.rights.holderMelzer, Michaeles
dc.rights.holderRutten, Twanes
dc.rights.holderGómez, Rodrigo Lioneles
dc.rights.holderLodeyro, Anabella F.es
dc.rights.holderWirén, Nicolaus vones
dc.rights.holderCarrillo, Néstores
dc.rights.holderHajirezaei, Mohammad-Rezaes
dc.rights.textAttribution 4.0 International (CC BY 4.0)es
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/*
dc.subjectA. thalianaes
dc.subjectCyanobacteriaes
dc.subjectFlavodiiron proteinses
dc.subjectPhotosynthesises
dc.subjectElectron sinkes
dc.subjectPrimary metabolismes
dc.subjectBiomasses
dc.titleProviding an additional electron sink by the introduction of cyanobacterial Ffavodiirons enhances growth of A. thaliana under various light intensitieses
dc.typearticle
dc.typeartículo
dc.typepublishedVersion
dc.type.collectionarticulo
dc.type.versionpublishedVersiones

Archivos

Bloque original
Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
fpls-11-00902.pdf
Tamaño:
2.25 MB
Formato:
Adobe Portable Document Format
Descripción:
Versión publicada
Bloque de licencias
Mostrando 1 - 1 de 1
Nombre:
license.txt
Tamaño:
3.59 KB
Formato:
Item-specific license agreed upon to submission
Descripción: