Planes de muestreo para datos espaciales: su comportamiento en un estudio socioeconómico

Resumen
En muchos estudios por muestreo, las unidades que constituyen la población se encuentran situadas en el espacio. Es frecuente observar en esta clase de poblaciones una característica conocida como correlación espacial positiva: los valores de la variable de interés son muy parecidos en unidades cercanas entre sí y menos parecidos a medida que la distancia entre ellas es mayor. Este comportamiento se puede representar mediante los modelos estadísticos conocidos como correlograma y semivariograma. La información obtenida de los mismos podrá resultar de utilidad al momento de diseñar la muestra, en cuanto a mejorar la precisión de las estimaciones. Esta información se puede aprovechar utilizándola en el proceso de estimación recurriendo al enfoque de predicción, el cual permite la incorporación del modelo de semivariograma para lograr las mejoras buscadas o, en el procedimiento de selección de la muestra, tópico en el cual se centra el presente trabajo. Existen varias propuestas para la selección de la muestra atendiendo a la correlación espacial presente. En este trabajo, se han considerado algunas de ellas, que tienen su origen en estudios sobre recursos naturales o problemas ambientales. Se plantea su aplicación en un estudio socioeconómico como lo es la estimación del número de hogares con NBI en la ciudad de Rosario a partir de una muestra de radios censales y se evalúa la eficiencia de los mismos. Se ha encontrado que varios de los métodos analizados proporcionan una mayor eficiencia que el muestreo aleatorio simple alentando la ampliación de los escenarios para los estudios de eficiencia, así como su aplicación en encuestas de este campo.

Palabras clave

Muestreo de datos espaciales, Thompson. Encuestas sociales., Estimador de Horvitz

Citación