Extraction of the muon signals recorded with the surface detector of the Pierre Auger Observatory using recurrent neural networks
dc.citation.title | Journal of Instrumentation (JINST) | es |
dc.citation.volume | 16 | |
dc.creator | Freire, M. M. | |
dc.creator | The Pierre Auger collaboration | |
dc.date.accessioned | 2022-04-12T20:12:20Z | |
dc.date.available | 2022-04-12T20:12:20Z | |
dc.date.issued | 2021-07-12 | |
dc.description | The Pierre Auger Observatory, at present the largest cosmic-ray observatory ever built, is instrumented with a ground array of 1600 water-Cherenkov detectors, known as the Surface Detector (SD). The SD samples the secondary particle content (mostly photons, electrons, positrons and muons) of extensive air showers initiated by cosmic rays with energies ranging from 1017 eV up to more than 1020 eV. Measuring the independent contribution of the muon component to the total registered signal is crucial to enhance the capability of the Observatory to estimate the mass of the cosmic rays on an event-by-event basis. However, with the current design of the SD, it is difficult to straightforwardly separate the contributions of muons to the SD time traces from those of photons, electrons and positrons. In this paper, we present a method aimed at extracting the muon component of the time traces registered with each individual detector of the SD using Recurrent Neural Networks. We derive the performances of the method by training the neural network on simulations, in which the muon and the electromagnetic components of the traces are known. We conclude this work showing the performance of this method on experimental data of the Pierre Auger Observatory. We find that our predictions agree with the parameterizations obtained by the AGASA collaboration to describe the lateral distributions of the electromagnetic and muonic components of extensive air showers. | es |
dc.description.fil | Fil: Freire, M. M. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Física de Rosario (IFIR-CONICET). Argentina. | es |
dc.description.sponsorship | Département Physique Nucléaire et Corpusculaire: PNC-IN2P3/CNRS | |
dc.description.sponsorship | Département Sciences de l’Univers | |
dc.description.sponsorship | María de Maeztu Unit of Excellence: MDM-2016-0692 | |
dc.description.sponsorship | Ministero degli Affari Esteri | |
dc.description.sponsorship | RENATA Red Nacional Temática de Astropartículas: FPA2015-68783-REDT | |
dc.description.sponsorship | SURF | |
dc.description.sponsorship | National Science Foundation (NSF) | |
dc.description.sponsorship | U.S. Department of Energy (USDOE): DE-AC02-07CH11359, DE-FG02-99ER41107, DE-FR02-04ER41300, DE-SC0011689 | |
dc.description.sponsorship | Directorate for Mathematical and Physical Sciences (MPS): Directorate for Mathematical and Physical Sciences | |
dc.description.sponsorship | United Nations Educational, Scientific and Cultural Organization (UNESCO) | |
dc.description.sponsorship | Australian Research Council (ARC) | |
dc.description.sponsorship | Helmholtz-Gemeinschaft (HGF) | |
dc.description.sponsorship | Deutsche Forschungsgemeinschaft (DFG) | |
dc.description.sponsorship | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP): 1999/05404-3, 2010/07359-6, 2019/10151-2 | |
dc.description.sponsorship | Fundação para a Ciência e a Tecnologia (FCT) | |
dc.description.sponsorship | Bundesministerium für Bildung und Forschung (BMBF) | |
dc.description.sponsorship | Comisión Nacional de Energía Atómica (CNEA) | |
dc.description.sponsorship | Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) | |
dc.description.sponsorship | Federación Española de Enfermedades Raras (FEDER) | |
dc.description.sponsorship | Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT) | |
dc.description.sponsorship | Consejo Nacional de Ciencia y Tecnología (CONACYT): 167733 | |
dc.description.sponsorship | Ministerie van Onderwijs, Cultuur en Wetenschap (OCW) | |
dc.description.sponsorship | Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO) | |
dc.description.sponsorship | Ministero dell’Istruzione, dell’Università e della Ricerca (MIUR) | |
dc.description.sponsorship | Ministerium für Wissenschaft, Forschung und Kunst Baden-Württemberg (MWK) | |
dc.description.sponsorship | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPQ) | |
dc.description.sponsorship | Conseil Régional, Île-de-France | |
dc.description.sponsorship | Instituto Nazionale di Fisica Nucleare (INFN) | |
dc.description.sponsorship | Narodowe Centrum Nauki (NCN): 2013/08/M/ST9/00322, 2016/23/B/ST9/01635, 5-2013/10/M/ST9/00062, UMO-2016/22/M/ST9/00198 | |
dc.description.sponsorship | Javna Agencija za Raziskovalno Dejavnost RS (ARRS): I0-0033, N1-0111, P1-0031, P1-0385 | |
dc.description.sponsorship | Ministerstwo Edukacji i Nauki (MNiSW9: DIR/WK/2018/11 | |
dc.description.sponsorship | Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ) | |
dc.description.sponsorship | Centre National de la Recherche Scientifique (CNRS) | |
dc.description.sponsorship | Financiadora de Estudos e Projetos (FINEP) | |
dc.description.sponsorship | Istituto Nazionale di Astrofisica (INAF) | |
dc.description.sponsorship | Universidad Nacional Autónoma de México (UNAM) | |
dc.description.sponsorship | Ministry of Education and Research: PN-III-P1-1.2-PCCDI-2017-0839/19PCCDI/2018, PN19060102, PN19150201/16N/2019 | |
dc.description.sponsorship | European Regional Development Fund (ERDF) | |
dc.description.sponsorship | Ministerium für Innovation, Wissenschaft und Forschung des Landes Nordrhein-Westfalen (MIWF-NRW) | |
dc.description.sponsorship | Ministerio de Asuntos Económicos y Transformación Digital (MINECO): FPA2017-85114-P, PID2019-104676GB-C32 | |
dc.description.sponsorship | Xunta de Galicia: ED431C 2017/07 | |
dc.description.sponsorship | Junta de Andalucía: P18-FR-4314 | |
dc.description.sponsorship | Ministério da Ciência, Tecnologia, Inovações e Comunicações (MCTIC): CZ.02.1.01/0.0/0.0/16_013/0001402, CZ.02.1.01/0.0/0.0/17_049/0008422, CZ.02.1.01/0.0/0.0/18_046/0016010, LM2015038, LM2018102, MSMT CR LTT18004 | |
dc.description.sponsorship | Programa Operacional Temático Factores de Competitividade (POFC) | |
dc.description.sponsorship | Institut Lagrange de Paris (ILP) | |
dc.format | application/pdf | |
dc.format.extent | 1-21 | es |
dc.identifier.issn | 1748-0221 | es |
dc.identifier.uri | http://hdl.handle.net/2133/23413 | |
dc.language.iso | eng | es |
dc.publisher | IOP Publishing | es |
dc.relation.publisherversion | https://iopscience.iop.org/article/10.1088/1748-0221/16/07/P07016 | es |
dc.relation.publisherversion | https://doi.org/10.1088/1748-0221/16/07/P07016 | |
dc.rights | openAccess | es |
dc.rights.holder | Freire, M. M. | es |
dc.rights.holder | The Pierre Auger collaboration | es |
dc.rights.text | Atribución 3.0 No portada (CC BY 3.0) | es |
dc.rights.uri | https://creativecommons.org/licenses/by/3.0/deed.es | * |
dc.subject | Analysis and statistical methods | es |
dc.subject | Cherenkov detectors | es |
dc.subject | Large detector systems for particle and astroparticle physics | es |
dc.subject | Pattern recognition, cluster finding, calibration and fitting methods | es |
dc.title | Extraction of the muon signals recorded with the surface detector of the Pierre Auger Observatory using recurrent neural networks | es |
dc.type | publishedVersion | |
dc.type | article | |
dc.type | artículo | |
dc.type.collection | articulo | |
dc.type.version | publishedVersion |