Comparación del desempeño de técnicas multivariadas de clasificación en datos simulados bajo distintos escenarios: Regresión Logística y Árboles de Clasificación

Fecha

2020-03-01

Título de la revista

ISSN de la revista

Título del volumen

Editor

Grupo IANUS
Resumen
En esta investigación se propone el estudio, evaluación y comparación de dos técnicas estadísticas multivariadas de clasificación, Regresión Logística y Árboles de Clasificación, siendo de interés evaluar el desempeño de las mismas cuando son utilizadas en datos simulados bajo distintas situaciones. Se simularon datos bajo 4 condiciones diferentes que diferían en la estructura de correlaciones entre las variables. El escenario 1 corresponde a datos provenientes de una población en la que los predictores están fuertemente correlacionados con la respuesta pero no entre ellos. El escenario 2 plantea una simulación a partir de una población con poca correlación de la respuesta con las variables predictoras pero éstas correlacionadas entre sí. En el escenario 3, la correlación presente en la población origen de la simulación es importante tanto entre las predictoras como entre éstas y la respuesta. Por último, el escenario 4 corresponde a una población original en la que no existe ningún tipo de correlación de magnitud importante entre las variables, ni de los predictores con la respuesta ni entre ellos. Se observó como resultado principal, que en condiciones donde las variables predictoras están altamente correlacionadas con la respuesta, si bien los AC mostraron un porcentaje de error significativamente menor en la clasificación, ambas metodologías funcionan satisfactoriamente. Sin embargo, cuando las condiciones para obtener una clasificación satisfactoria son desfavorables (predictores poco correlacionados con la respuesta) los AC logran un porcentaje de clasificación correcta notablemente superior a la RL, con la desventaja de obtener un árbol con numerosos nodos terminales utilizando la información de prácticamente todas las variables explicativas.

Palabras clave

Regresión logística, Árboles de clasificación, Simulación

Citación