Second-order advantage obtained from standard addition first-order instrumental data and multivariate curve resolution-alternating least squares : calculation of the feasible bands of results

Resumen
In order to achieve the second-order advantage, second-order data per sample is usually required, e.g., kinetic-spectrophotometric data. In this study, instead of monitoring the time evolution of spectra (and collecting the kinetic-spectrophotometric data) replicate spectra are used to build a virtual second order data. This data matrix (replicate mode k) is rank deficient. Augmentation of these data with standard addition data [or standard sample(s)] will break the rank deficiency, making the quantification of the analyte of interest possible. The MCR-ALS algorithm was applied for the resolution and quantitation of the analyte in both simulated and experimental data sets. In order to evaluate the rotational ambiguityin the retrieved solutions, the MCR-BANDS algorithm was employed. It has been shown that the reliability of the quantitative results significantly depends on the amount of spectral overlap in the spectral region of occurrence of the compound of interest and the remaining constituent(s).

Palabras clave

MCR-ALS, Second-order Advantage, First-order Data, Standard Addition, Feasible Solutions

Citación