Time–Adaptive Support Vector Machines

dc.contributor.authorGrinblat, Guillermo
dc.contributor.authorGranitto, Pablo M.
dc.contributor.authorCeccatto, Alejandro
dc.date.accessioned2011-03-11T13:46:59Z
dc.date.available2011-03-11T13:46:59Z
dc.date.issued2008
dc.description.abstractIn this work we propose an adaptive classification method able both to learn and to follow the temporal evolution of a drifting concept. With that purpose we introduce a modified SVM classifier, created using multiple hyperplanes valid only at small temporal intervals (windows). In contrast to other strategies proposed in the literature, our method learns all hyperplanes in a global way, minimizing a cost function that evaluates the error committed by this family of local classifiers plus a measure associated to the VC dimension of the family. We also show how the idea of slowly changing classifiers can be applied to non-linear stationary concepts with results similar to those obtained with normal SVMs using gaussian kernels.es
dc.description.peerreviewedPeer reviewedes
dc.identifier.issn1137-3601
dc.identifier.urihttp://hdl.handle.net/2133/1718
dc.language.isoen_USes
dc.publisherAsociación Española de Inteligencia Artificiales
dc.relation.publisherversionhttp://www.aepia.org/es
dc.rightsOpen accesses
dc.rights.text© AEPIAes
dc.subjectAdaptive methodses
dc.subjectSupport Vector Machinees
dc.subjectDrifting conceptses
dc.titleTime–Adaptive Support Vector Machineses
dc.typeArticlees

Archivos

Bloque original
Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
grinblat08a.pdf
Tamaño:
181.08 KB
Formato:
Adobe Portable Document Format