Logotipo del repositorio
  • Español
  • English
  • Iniciar sesión
    ¿Nuevo Usuario? Pulse aquí para registrarse ¿Has olvidado tu contraseña?
Logotipo del repositorio
    Comunidades
    Todo el RepHip
  • Ayuda
  • Español
  • English
  • Iniciar sesión
    ¿Nuevo Usuario? Pulse aquí para registrarse ¿Has olvidado tu contraseña?
  1. Inicio
  2. Buscar por autor

Examinando por Autor "Traglia, German M."

Mostrando 1 - 4 de 4
Resultados por página
Opciones de ordenación
  • Cargando...
    Miniatura
    ÍtemAcceso Abierto
    Carbapenem‑resistant Acinetobacter baumannii (CRAB): metabolic adaptation and transcriptional response to human urine (HU)
    (Nature Research, 2024-08-19) Escalante, Jenny; Hamza, Mase; Nishimura, Brent; Melecio, Meghan; Davies Sala, Carol; Tuttobene, Marisel Romina; Subils, Tomás; Traglia, German M.; Pham, Chloe; Sieira, Rodrigo; Actis, Luis A.; Bonomo, Robert A.; Tolmasky, Marcelo E.; Ramírez, María Soledad
    Carbapenem-resistant Acinetobacter baumannii (CRAB) is a major human pathogen and a research priority for developing new antimicrobial agents. CRAB is a causative agent of a variety of infections in diferent body sites. One of the manifestations is catheter-associated urinary tract infection, which exposes the bacteria to the host’s urine, creating a particular environment. Exposure of two CRAB clinical isolates, AB5075 and AMA40, to human urine (HU) resulted in the diferential expression levels of 264 and 455 genes, respectively, of which 112 were common to both strains. Genes within this group play roles in metabolic pathways such as phenylacetic acid (PAA) catabolism, the Hut system, the tricarboxylic acid (TCA) cycle, and other processes like quorum sensing and bioflm formation. These results indicate that the presence of HU induces numerous adaptive changes in gene expression of the infecting bacteria. These changes presumably help bacteria establish and thrive in the hostile conditions in the urinary tract. These analyses advance our understanding of CRAB’s metabolic adaptations to human fuids, as well as expand knowledge on bacterial responses to distinct human fuids containing diferent concentrations of human serum albumin (HSA).
  • Cargando...
    Miniatura
    ÍtemAcceso Abierto
    Characterisation of ST25 NDM-1-producing Acinetobacter spp. strains leading the increase in NDM-1 emergence in Argentina
    (Elsevier, 2020-09-02) Rodgers, Deja; Pasteran, Fernando; Calderon, Manuel; Jaber, Sara; Traglia, German M.; Albornoz, Ezequiel; Corso, Alejandra; Vila, Alejandro J.; Bonomo, Robert A.; Adams, Mark D.; Ramírez, María Soledad
  • Cargando...
    Miniatura
    ÍtemAcceso Abierto
    Hetero-antagonism of avibactam and sulbactam with cefiderocol in carbapenem-resistant Acinetobacter spp
    (American Society for Microbiology, 2024-08-20) Wong, Olivia; Mezcord, Vyanka; Lopez, Christina; Traglia, German M.; Pasteran, Fernando; Tuttobene, Marisel Romina; Corso, Alejandra; Tolmasky, Marcelo E.; Bonomo, Robert A.; Ramírez, María Soledad; https://orcid.org/0000-0002-4780-5311; https://orcid.org/0000-0001-5840-5869; https://orcid.org/0000-0003-0234-4643; https://orcid.org/0000-0002-6298-7811; https://orcid.org/0000-0002-3299-894X; https://orcid.org/0000-0002-9904-7890
    Cefiderocol, a siderophore-cephalosporine conjugate antibiotic, shows promise as a therapeutic option for carbapenem-resistant (CR) Acinetobacter infections. While resistance has already been reported in A. baumannii, combination therapies with avibactam or sulbactam reduce MICs of cefiderocol, extending its efficacy. However, careful consideration is necessary when using these combinations. In our experiments, exposure of A. baumannii and A. lwoffii to cefiderocol and sulbactam or avibactam led to the selection of cefiderocol-resistant strains. Three of those were subjected to whole genome sequencing and transcriptomic analysis. The strains all possessed synonymous and non-synonymous substitutions and short deletions. The most significant mutations affected efflux pumps, transcriptional regulators, and iron homeostasis genes. Transcriptomics showed significant alterations in expression levels of outer membrane proteins, iron homeostasis, and β-lactamases, suggesting adaptive responses to selective pressure. This study underscores the importance of carefully assessing drug synergies, as they may inadvertently foster the selection of resistant variants and complicate the management of CR Acinetobacter infections.
  • Cargando...
    Miniatura
    ÍtemAcceso Abierto
    Induced Heteroresistance in Carbapenem-Resistant Acinetobacter baumannii (CRAB) via Exposure to Human Pleural Fluid (HPF) and Its Impact on Cefiderocol Susceptibility
    (MDPI, 2023-07-21) Mezcord, Vyanka; Escalante, Jenny; Nishimura, Brent; Traglia, German M.; Sharma, Rajnikant; Vallé, Quentin; Tuttobene, Marisel Romina; Subils, Tomás; Marin, Ingrid; Pasteran, Fernando; Actis, Luis A.; Tolmasky, Marcelo E.; Bonomo, Robert A.; Rao, Gauri; Ramírez, María Soledad; https://orcid.org/0000-0003-1896-8450; https://orcid.org/0000-0002-4780-5311; https://orcid.org/0000-0001-5840-5869; https://orcid.org/0000-0001-9644-9088; https://orcid.org/0000-0002-6298-7811; https://orcid.org/0000-0002-9904-7890
    Infections caused by Carbapenem-resistant Acinetobacter baumannii (CRAB) isolates, such as hospital-acquired pneumonia (HAP), bacteremia, and skin and soft tissue infections, among others, are particularly challenging to treat. Cefiderocol, a chlorocatechol-substituted siderophore antibiotic, was approved by the U.S. Food and Drug Administration (FDA) in 2019 and prescribed for the treatment of CRAB infections. Despite the initial positive treatment outcomes with this antimicrobial, recent studies reported a higher-than-average all-cause mortality rate in patients treated with cefiderocol compared to the best available therapy. The cause(s) behind these outcomes remains unconfirmed. A plausible hypothesis is heteroresistance, a phenotype characterized by the survival of a small proportion of cells in a population that is seemingly isogenic. Recent results have demonstrated that the addition of human fluids to CRAB cultures leads to cefiderocol heteroresistance. Here, we describe the molecular and phenotypic analyses of CRAB heteroresistant bacterial subpopulations to better understand the nature of the less-than-expected successful outcomes after cefiderocol treatment. Isolation of heteroresistant variants of the CRAB strain AMA40 was carried out in cultures supplemented with cefiderocol and human pleural fluid (HPF). Two AMA40 variants, AMA40 IHC1 and IHC2, were resistant to cefiderocol. To identify mutations and gene expression changes associated with cefiderocol heteroresistance, we subjected these variants to whole genome sequencing and global transcriptional analysis. We then assessed the impact of these mutations on the pharmacodynamic activity of cefiderocol via susceptibility testing, EDTA and boronic acid inhibition analysis, biofilm formation, and static time-kill assays. Heteroresistant variants AMA40 IHC1 and AMA40 IHC2 have 53 chromosomal mutations, of which 40 are common to both strains. None of the mutations occurred in genes associated with high affinity iron-uptake systems or β-lactam resistance. However, transcriptional analyses demonstrated significant modifications in levels of expression of genes associated with iron-uptake systems or β-lactam resistance. The blaNDM-1 and blaADC-2, as well as various iron-uptake system genes, were expressed at higher levels than the parental strain. On the other hand, the carO and ompA genes’ expression was reduced. One of the mutations common to both heteroresistant strains was mapped within ppiA, a gene associated with iron homeostasis in other species. Static time-kill assays demonstrated that supplementing cation-adjusted Mueller–Hinton broth with human serum albumin (HAS), the main protein component of HPF, considerably reduced cefiderocol killing activity for all three strains tested. Notably, collateral resistance to amikacin was observed in both variants. We conclude that exposing CRAB to fluids with high HSA concentrations facilitates the rise of heteroresistance associated with point mutations and transcriptional upregulation of genes coding for β-lactamases and biofilm formation. The findings from this study hold significant implications for understanding the emergence of CRAB resistance mechanisms against cefiderocol treatment. This understanding is vital for the development of treatment guidelines that can effectively address the challenges posed by CRAB infections.

RepHipUNR ©2007-2024

Universidad Nacional de Rosario

  • Configuración de cookies
  • Política de privacidad
  • Acuerdo de usuario final
  • Enviar Sugerencias