Examinando por Autor "Stenta, Hernan R."
Mostrando 1 - 10 de 10
Resultados por página
Opciones de ordenación
Ítem Acceso Abierto Aplicación de un modelo hidrológicohidráulico para el pronóstico de niveles de agua en tiempo real(Instituto Mexicano de Tecnologia del Agua, 2013-03) Riccardi, Gerardo A.; Stenta, Hernan R.; Scuderi, Carlos M.; Basile, Pedro A.; Zimmermann, Erik D.; Trivisonno, Franco N.Ítem Acceso Abierto Coevolution of hydraulic, soil and vegetation processes in estuarine wetlands.(European Geophysical Union, 2014-04) Trivisonno, Franco N.; Rodriguez, Jose F.; Riccardi, Gerardo A.; Saco, Patricia M.; Stenta, Hernan R.Estuarine wetlands of south eastern Australia, typically display a vegetation zonation with a sequence mudflats - mangrove forest - saltmarsh plains from the seaward margin and up the topographic gradient. Estuarine wetlands are among the most productive ecosystems in the world, providing unique habitats for fish and many terrestrial species. They also have a carbon sequestration capacity that surpasess terrestrial forest. Estuarine wetlands respond to sea-level rise by vertical accretion and horizontal landward migration, in order to maintain their position in the tidal frame. In situations in which buffer areas for landward migration are not available, saltmarsh can be lost due to mangrove encroachment. As a result of mangrove invasion associated in part with raising estuary water levels and urbanisation, coastal saltmarsh in parts of south-eastern Australia has been declared an endangered ecological community. Predicting estuarine wetlands response to sea-level rise requires modelling the coevolving dynamics of water flow, soil and vegetation. This paper presents preliminary results of our recently developed numerical model for wetland dynamics in wetlands of the Hunter estuary of NSW. The model simulates continuous tidal inflow into the wetland, and accounts for the effect of varying vegetation types on flow resistance. Coevolution effects appear as vegetation types are updated based on their preference to prevailing hydrodynamic conditions. The model also considers that accretion values vary with vegetation type. Simulations are driven using local information collected over several years, which includes estuary water levels, accretion rates, soil carbon content, flow resistance and vegetation preference to hydraulic conditions. Model results predict further saltmarsh loss under current conditions of moderate increase of estuary water levels.Ítem Acceso Abierto Diseño Hidrológico en Sistemas hídricos de llanura y su aplicación en la cuenca del arroyo Ludueña, Santa Fe, Argentina(Editorial Martin, Mar del Plata, 2010-09) Riccardi, Gerardo A.; Zimmermann, Erik D.; Basile, Pedro A.; Stenta, Hernan R.; Scuderi, Carlos M.; Odicini, LuciaEn cuencas hidrográficas de la región del gran Rosario se evidencia una alteración en el régimen de caudales máximos originados a partir de la ocurrencia simultánea de lluvias extremas de corta y larga duración, condiciones de humedad antecedentes más rigurosas, impermeabilizaciones a causa de desarrollos urbanos, canalizaciones sin planificación, prácticas agrícolas que aceleran el escurrimiento, drenajes de bajos naturales, entre las causas más importantes. Este proceso ha dado lugar a la revisión y replanteo de pautas de diseño hidrológico históricamente utilizadas. En este trabajo se describe la metodología de diseño hidrológico considerada recientemente en la cuenca hidrográfica del arroyo Ludueña (Santa Fe, Argentina).Ítem Acceso Abierto Efectos del tamaño de grilla sobre la modelación matemática distribuida del escurrimiento superficial en cuencas de llanura(2008-11-14) Stenta, Hernan R.; Riccardi, Gerardo Adrián; Basile, Pedro A.En el presente trabajo se analizan los efectos del tamaño de grilla sobre la modelación matemática distribuida del escurrimiento superficial en cuencas de llanura y se propone el escalamiento de parámetros con la finalidad de obtener respuestas hidrológicas e hidráulicas similares entre las diferentes discretizaciones para el escurrimiento superficial. Para el estudio se utiliza el modelo matemático cuasi-bidimensional CTSS8 (Riccardi, 2001); basado en esquemas de celdas con aproximación de onda difusiva. Se propone un procedimiento para el escalamiento de parámetros y se cuantifica el grado de similitud alcanzado entre las variables de flujo de las diferentes discretizaciones. La similitud entre esquemas se plantea para las variables de flujo: caudal, velocidad y alturas medias de agua en todo el dominio de la cuenca. Los parámetros a escalar son: i) coeficiente de rugosidad para flujo superficial en celda y ii) la geometría de almacenamiento y conducción en celda parametrizada por la pendiente transversal en celda (ITC). Los resultados obtenidos de las simulaciones hidrológicas indican que a medida que se incrementa el tamaño de la grilla es necesario incrementar el coeficiente de resistencia del flujo entre celdas o bien reducir el parámetro ITC; para lograr similitud hidrológica e hidráulica. Se obtiene mayor similitud hidrológica e hidráulica mediante el escalamiento del parámetro ITC respecto al escalamiento de coeficiente de rugosidad para flujo superficial en celda.Ítem Acceso Abierto Estuarine wetland evolution including sea-level rise and infrastructure effects.(EGU General Assembly 2015 © Author(s) 2015. CC Attribution 3.0 License., 2015-04) Rodriguez, Jose F.; Trivisonno, Franco N.; Sandi, Steven G.; Riccardi, Gerardo A.; Stenta, Hernan R.; Saco, Patricia M.Estuarine wetlands are an extremely valuable resource in terms of biotic diversity, flood attenuation, storm surge protection, groundwater recharge, filtering of surface flows and carbon sequestration. On a large scale the survival of these systems depends on the slope of the land and a balance between the rates of accretion and sea-level rise, but local man-made flow disturbances can have comparable effects. Climate change predictions for most of Australia include an accelerated sea level rise, which may challenge the survival of estuarine wetlands. Furthermore, coastal infrastructure poses an additional constraint on the adaptive capacity of these ecosystems. Numerical models are increasingly being used to assess wetland dynamics and to help manage some of these situations. We present results of a wetland evolution model that is based on computed values of hydroperiod and tidal range that drive vegetation preference. Our first application simulates the long term evolution of an Australian wetland heavily constricted by infrastructure that is undergoing the effects of predicted accelerated sea level rise. The wetland presents a vegetation zonation sequence mudflats - mangrove - saltmarsh from the seaward margin and up the topographic gradient but is also affected by compartmentalization due to internal road embankments and culverts that effectively attenuates tidal input to the upstream compartments. For this reason, the evolution model includes a 2D hydrodynamic module which is able to handle man-made flow controls and spatially varying roughness. It continually simulates tidal inputs into the wetland and computes annual values of hydroperiod and tidal range to update vegetation distribution based on preference to hydrodynamic conditions of the different vegetation types. It also computes soil accretion rates and updates roughness coefficient values according to evolving vegetation types. In order to explore in more detail the magnitude of flow attenuation due to roughness and its effects on the computation of tidal range and hydroperiod, we performed numerical experiments simulating floodplain flow on the side of a tidal creek using different roughness values. Even though the values of roughness that produce appreciable changes in hydroperiod and tidal range are relatively high, they are within the range expected for some of the wetland vegetation. Both applications of the model show that flow attenuation can play a major role in wetland hydrodynamics and that its effects must be considered when predicting wetland evolution under climate change scenarios, particularly in situations where existing infrastructure affects the flow.Ítem Acceso Abierto Experiencias de simulación físicamente basada de escurrimiento superficial en cuencas de llanura en ambientes rurales y urbanos(Editorial Martin, Mar del Plata, 2010-09) Riccardi, Gerardo A.; Zimmermann, Erik D.; Basile, Pedro A.; Stenta, Hernan R.; Scuderi, Carlos M.; Renteria, Juan P.Se presenta una serie de aplicaciones de diversas variantes de un sistema de modelación hidrológica-hidráulica físicamente basado cuasi 2D en las que se ha utilizado esta herramienta tecnológica en la simulación a nivel de cuenca, en el mapeo de zonas inundables, en el diseño de obras de infraestructura de saneamiento, en el diagnóstico de obras de desagües existentes en ambientes urbanos, en la descripción de la base hidrodinámica a nivel de cuenca para la simulación de producción y transporte de sedimentos, como así también en la modelación de escurrimiento en grandes ríos aluviales. Los resultados obtenidos han sido completamente satisfactorio En los casos de aplicación se ha llegado a resultados satisfactorios mostrando el modelo una apropiada capacidad de reproducción de los procesos presentes en la transformación lluvia-caudal y la propagación de flujo en cuencas de llanura y cursos de agua.Ítem Acceso Abierto III TALLER SOBRE REGIONALIZACIÓN DE PRECIPITACIONES MÁXIMAS(UNR Editora, 2012-04) Riccardi, Gerardo A.; Stenta, Hernan R.; Scuderi, Carlos M.; Basile, Pedro A.; Zimmermann, Erik D.El evento “III Taller sobre Regionalización de Precipitaciones Máximas” se llevó a cabo los días 1 y 2 de diciembre de 2011 en dependencias de la Facultad de Ciencias Exactas, Ingeniería y Agrimensura, Universidad Nacional de Rosario, de la ciudad de Rosario, provincia de Santa Fe, Argentina, donde expertos de diferentes regiones de nuestro país expusieron y debatieron sobre la temática en cuestión. El taller contó con la participación en calidad de autores y expositores de 65 especialistas, quienes llevaron adelante la ponencia de 25 trabajos científico-técnicos. Asimismo se contó con la participación en calidad de asistentes de 50 profesionales, alumnos y público en general, interesados en los diferentes abordajes del análisis de precipitaciones intensas y su extensión hacia el diseño hidrológico. El taller se enmarca en la continuidad de aquellos que se realizaran en Concordia y Córdoba en 2007 y 2009 respectivamente. El taller fue organizado por del Departamento de Hidráulica y el Centro Universitario Rosario de Investigaciones Hidroambientales y contó con el auspicio de la Escuela de Ingeniería Civil, la Facultad de Ciencias Exactas, Ingenieria y Agrimensura, la Universidad Nacional de Rosario y el Instituto Nacional del Agua. Las instituciones que se hicieron presente por medio de los autores y expositores fueron: Centro de Estudios y Tecnología del Agua. (FCEFyN-UNC); Centro de la Región Semiárida. (INA); Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. (CIFASIS-CONICET); Centro Regional Litoral. (INA); Centro Universitario Rosario de Investigaciones Hidroambientales. (CURIHAM-FCEIAUNR); Comisión Técnica Mixta de Salto Grande. Represa de Salto Grande. Uruguay-Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas; Departamento de Hidráulica. (FCEIA-UNR); Departamento de Hidráulica. (FI-UNNE); Departamento de Ingeniería Agrícola y Uso de la Tierra. (FA. UBA); Facultad de Ciencias de la Administración y Alimentación. (UNER); Facultad de Ingeniería. (UBA); Facultad de Ingeniería y Ciencias Hídricas. (UNL); Facultad Regional Concordia. (UTN); Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. (IANIGLA-CONICET); Instituto de Estudios del Ambiente y Recursos Naturales. (FFyL-UNCUYO); Instituto de Hidrología de Llanuras. (UNICEN); Laboratorio de Construcciones Hidráulicas (FCEyT-UNT); Laboratorio de Hidráulica. Departamento de Ingeniería Civil. Facultad Regional Córdoba. (UTN); Servicio Meteorológico Nacional (SMN) y Universidad Católica de Córdoba. La Comisión Organizadora del taller estuvo conformada por: Dr. Ing. Civil Gerardo Riccardi; Dr. Ing. Civil Hernán Stenta; MSc. Ing. CIvil Carlos Scuderi; Dr. Ing. Civil Pedro Basile y Dr. Ing. Civil Erik Zimmermann, todos miembros del Departamento de Hidráulica y CURIHAM (FCEIA, UNR). Durante el taller se abordaron diferentes tópicos involucrando: técnicas multiespectrales para la estimación de precipitación, diseño y construcción de base de datos de precipitaciones; derivación, parametrización y regionalización de curvas IDF (o IDT); determinación de potencial erosivo de lluvias; análisis de precipitaciones máximas diarias, precipitaciones de larga duración, precipitaciones máximas probables y precipitaciones máximas mensuales; análisis, desempeño y aplicaciones del modelo DIT (y sus variantes) para predicción de lluvias máximas; regionalización de láminas máximas diarias; análisis dinámico de tormentas extremas; variabilidad de extremos por efectos orográficos; análisis de frecuencia en cuencas andinas; aplicaciones del modelo SQRT-ETmax para máximos diarios y criterios de diseño para sistemas de reservorios-estaciones elevadoras. Como tema asociado al diseño hidrológico se abordó también la problemática de la planificación en cuencas con fuertes procesos de urbanización. Asimismo fue presentado el proyecto IFI-LAC en Latinoamérica del PHI-UNESCO que aborda la problemática de inundaciones como así también fue presentado el sistema nacional de radarización meteorológica (SINARAME). Por último se elaboró una síntesis final y se consensuó la sede del próximo taller resultando la ciudad de San Miguel de Tucumán en el año 2014. Dado que la presente publicación tiene un carácter científico y además documental, se presenta el lenguaje, estructura, organización, calidad de edición y alcance original de cada artículo.Ítem Acceso Abierto Macquarie River floodplain flow modeling: implicaitons for ecogeomorphology(CRC Press, 2014) Sandi, Steven G.; Rodriguez, Jose F.; Saco, Patricia M.; Riccardi, Gerardo A.; Wen, Li; Saintilan, Neil; Stenta, Hernan R.; Trivisonno, Franco N.This work presents preliminary results of implementing of a quasi-2D hydrodynamic module (VHHMM 1.0) to simulate flows and flooding patterns throughout the Macquarie Marshes, south east Australia, in order to assess habitat requirements. The model uses an interconnected cell scheme that solves mass conservation and uses simplified versions of the momentum equations to represent flow between cells. This model has been used before to assess geomorphological changes in large river floodplains and vegetation evolution in estuarine wetlands, showing results consistent with cases of gradual floodplain inundation following overbank flow. The simplified characteristics of the quasi-2D model allow for an adequate representation of hydrodynamic processes with similar performance of other higher dimensional models. Model results and computational times are compared with outputs from a conventional 1D/2D model (MIKE FLOOD) applied to the same domain showing that the VHHMM 1.0 is adequate for representation of floods in the Macquarie Marshes.Ítem Acceso Abierto Modelling estuarine wetlands under climate change and infrastructure pressure(Piantadosi, J., Anderssen, R.S. and Boland, J., 2013-12) Trivisonno, Franco N.; Rodriguez, Jose F.; Riccardi, Gerardo A.; Saco, Patricia M.; Stenta, Hernan R.; Modelling and Simulation Society of Australia and New Zealand Inc.Abstract: Estuarine wetlands are an extremely valuable resource in terms of biotic diversity, flood attenuation, storm surge protection, groundwater recharge, filtering of surface flows and carbon sequestration. The survival of these systems depends on a balance between the slope of the land, and the rates of accretion and sea-level rise. Climate change predictions for most of Australia include both an accelerated sea level rise and an increase on the frequency of extraordinary river floods, which will endanger estuarine wetlands. Furthermore, coastal infrastructure poses an additional constraint on the adaptive capacity of these ecosystems. In recent years a number of numerical models have been developed in order to assess wetland dynamics and to help manage some of these situations. In this paper we present a wetland evolution model that is based on computed values of hydroperiod and tidal range that drive vegetation preference. Results from a 2D spatially distributed model of wetland dynamics in area E of Kooragang Island (Hunter estuary, NSW) are presented as an example of a system heavily constricted by infrastructure undergoing the effects of sea level rise. Area E presents a vegetation zonation sequence mudflats - mangrove - saltmarsh from the seaward margin and up to the topographic gradient and is compartmentalized by the presence of internal culverts. The model includes a detailed hydrodynamic module (CTSS8), which is able to handle man-made flow controls and spatially varying roughness. The model continually simulates tidal inputs into the wetland and computes annual values of hydroperiod and tidal range to update vegetation distribution based on preference to hydrodynamic conditions of the different vegetation types. It also computes soil accretion and carbon sequestration rates and updates roughness coefficient values according to evolving vegetation types. In order to further explore the magnitude of flow attenuation due to roughness and its effects on the computation of tidal range and hydroperiod, numerical experiments were carried out simulating floodplain flow on the side of a tidal creek using different roughness values. Even though the values of roughness that produce appreciable changes in hydroperiod and tidal range are relatively high, they are within the range expected for some of the wetland vegetation. Both applications of the model show that flow attenuation plays a major role in wetland hydrodynamics and that its effects must be considered when predicting wetland evolution under climate change scenarios, particularly in situations where existing infrastructure affects the flow.Ítem Acceso Abierto La simulación físicamente basada de escurrimiento superficial como herramienta de pronósticos de niveles en sistemas de alerta hidrológico en zonas de llanura(Editorial Martin, Mar del Plata, 2010-09) Riccardi, Gerardo A.; Zimmermann, Erik D.; Basile, Pedro A.; Stenta, Hernan R.; Scuderi, Carlos M.; Renteria, Juan P.; Odicini, LuciaEn este trabajo se describe la experiencia de utilización de un modelo de simulación hidrológica-hidráulica cuasi-2D físicamente basado VMMHH 1.0 como algoritmo de transformación lluvia caudal y generación y propagación de escurrimiento superficial, dentro de un sistema de alerta hidrológica, y su aplicación en una sistema hidrológico no típico de llanura como la cuenca del arroyo Ludueña, en la provincia de Santa Fe, Argentina. Este trabajo complementa lo presentado por Stenta et al. (2010), focalizando en la descripción y análisis de los resultados en términos de niveles, caudales y volúmenes, correspondientes a la implementación del modelo durante el ciclo húmedo 2009 a 2010.