Examinando por Autor "Shahinnia, Fahimeh"
Mostrando 1 - 6 de 6
Resultados por página
Opciones de ordenación
Ítem Acceso Abierto Engineering Climate-Change-Resilient Crops: New Tools and Approaches(MDPI, 2021-07-23) Shahinnia, Fahimeh; Carrillo, Néstor; Hajirezaei, Mohammad-RezaÍtem Acceso Abierto Expression of Flavodiiron Proteins Flv2-Flv4 in Chloroplasts of Arabidopsis and Tobacco Plants Provides Multiple Stress Tolerance(MDPI, 2021-01-25) Vicino, Paula; Carrillo, Julieta; Gómez, Rodrigo Lionel; Shahinnia, Fahimeh; Tula, Suresh; Melzer, Michael; Rutten, Twan; Carrillo, Néstor; Hajirezaei, Mohammad-Reza; Lodeyro, Anabella F.; https://orcid.org/0000-0002-8789-0899; https://orcid.org/0000-0001-8236-7647; https://orcid.org/0000-0002-5213-4030With the notable exception of angiosperms, all phototrophs contain different sets of flavodiiron proteins that help to relieve the excess of excitation energy on the photosynthetic electron transport chain during adverse environmental conditions, presumably by reducing oxygen directly to water. Among them, the Flv2-Flv4 dimer is only found in β-cyanobacteria and induced by high light, supporting a role in stress protection. The possibility of a similar protective function in plants was assayed by expressing Synechocystis Flv2-Flv4 in chloroplasts of tobacco and Arabidopsis. Flv-expressing plants exhibited increased tolerance toward high irradiation, salinity, oxidants, and drought. Stress tolerance was reflected by better growth, preservation of photosynthetic activity, and membrane integrity. Metabolic profiling under drought showed enhanced accumulation of soluble sugars and amino acids in transgenic Arabidopsis and a remarkable shift of sucrose into starch, in line with metabolic responses of drought-tolerant genotypes. Our results indicate that the Flv2-Flv4 complex retains its stress protection activities when expressed in chloroplasts of angiosperm species by acting as an additional electron sink. The flv2-flv4 genes constitute a novel biotechnological tool to generate plants with increased tolerance to agronomically relevant stress conditions that represent a significant productivity constraint.Ítem Acceso Abierto Genome-wide plant responses during the non-host interaction of tobacco with the Hemibiotrophic Bacterium Xanthomonas campestris pv. Vesicatoria(Frontiers Media, 2017-07-04) Pierella Karlusich, Juan J.; Matias D. Zurbriggen, Matias D.; Shahinnia, Fahimeh; Sonnewald, Sophia; Sonnewald, Uwe; Hosseini, Seyed A.; Hajirezaei, Mohammad-Reza; Carrillo, NéstorÍtem Acceso Abierto Plastid-targeted Cyanobacterial Flavodiiron proteins maintain carbohydrate turnover and enhance drought stress tolerance in barley(Frontiers Media, 2021-02-13) Shahinnia, Fahimeh; Tula, Suresh; Hensel, Goetz; Reiahisamani, Narges; Nasr, Nasrin; Kumlehn, Jochen; Gómez, Rodrigo Lionel; Lodeyro, Anabella F.; Carrillo, Néstor; Hajirezaei, Mohammad-RezaChloroplasts, the sites of photosynthesis in higher plants, have evolved several means to tolerate short episodes of drought stress through biosynthesis of diverse metabolites essential for plant function, but these become ineffective when the duration of the stress is prolonged. Cyanobacteria are the closest bacterial homologs of plastids with two photosystems to perform photosynthesis and to evolve oxygen as a byproduct. The presence of Flv genes encoding flavodiiron proteins has been shown to enhance stress tolerance in cyanobacteria. In an attempt to support the growth of plants exposed to drought, the Synechocystis genes Flv1 and Flv3 were expressed in barley with their products being targeted to the chloroplasts. The heterologous expression of both Flv1 and Flv3 accelerated days to heading, increased biomass, promoted the number of spikes and grains per plant, and improved the total grain weight per plant of transgenic lines exposed to drought. Improved growth correlated with enhanced availability of soluble sugars, a higher turnover of amino acids and the accumulation of lower levels of proline in the leaf. Flv1 and Flv3 maintained the energy status of the leaves in the stressed plants by converting sucrose to glucose and fructose, immediate precursors for energy production to support plant growth under drought. The results suggest that sugars and amino acids play a fundamental role in the maintenance of the energy status and metabolic activity to ensure growth and survival under stress conditions, that is, water limitation in this particular case. Engineering chloroplasts by Flv genes into the plant genome, therefore, has the potential to improve plant productivity wherever drought stress represents a significant production constraint.Ítem Acceso Abierto Providing an additional electron sink by the introduction of cyanobacterial Ffavodiirons enhances growth of A. thaliana under various light intensities(Frontiers Media, 2020-06-25) Tula, Suresh; Shahinnia, Fahimeh; Melzer, Michael; Rutten, Twan; Gómez, Rodrigo Lionel; Lodeyro, Anabella F.; Wirén, Nicolaus von; Carrillo, Néstor; Hajirezaei, Mohammad-RezaÍtem Acceso Abierto Transcriptional and metabolic profiling of potato plants expressing a plastid-targeted electron shuttle reveal modulation of genes associated to drought tolerance by chloroplast redox poise(MDPI, 2020-09-29) Pierella Karlusich, Juan J.; Arce, Rocío C.; Shahinnia, Fahimeh; Sonnewald, Sophia; Sonnewald, Uwe; Zurbriggen, Matias D.; Hajirezaei, Mohammad-Reza; Carrillo, Néstor; https://orcid.org/0000-0003-1739-4424; https://orcid.org/0000-0001-6549-6316; https://orcid.org/0000-0001-8236-7647; https://orcid.org/0000-0002-9185-6255Water limitation represents the main environmental constraint affecting crop yield worldwide. Photosynthesis is a primary drought target, resulting in over-reduction of the photosynthetic electron transport chain and increased production of reactive oxygen species in plastids. Manipulation of chloroplast electron distribution by introducing alternative electron transport sinks has been shown to increase plant tolerance to multiple environmental challenges including hydric stress, suggesting that a similar strategy could be used to improve drought tolerance in crops. We show herein that the expression of the cyanobacterial electron shuttle flavodoxin in potato chloroplasts protected photosynthetic activities even at a pre-symptomatic stage of drought. Transcriptional and metabolic profiling revealed an attenuated response to the adverse condition in flavodoxin-expressing plants, correlating with their increased stress tolerance. Interestingly, 5–6% of leaf-expressed genes were affected by flavodoxin in the absence of drought, representing pathways modulated by chloroplast redox status during normal growth. About 300 of these genes potentially contribute to stress acclimation as their modulation by flavodoxin proceeds in the same direction as their drought response in wild-type plants. Tuber yield losses under chronic water limitation were mitigated in flavodoxin-expressing plants, indicating that the flavoprotein has the potential to improve major agronomic traits in potato.