Examinando por Autor "Serra, Esteban Carlos"
Mostrando 1 - 11 de 11
Resultados por página
Opciones de ordenación
Ítem Acceso Abierto 1,3,4-oxadiazoles as inhibitors of the atypical member of the BET family bromodomain factor 3 from Trypanosoma cruzi (TcBDF3)(Frontiers, 2024-10-01) Alonso, Victoria Lucía; Escalante, Andrea Marta; Rodríguez Araya, Elvio; Frattini, Gianfranco; Tavernelli, Luis Emilio; Moreno, Diego M.; Furlán, Ricardo Luis Eugenio; Serra, Esteban CarlosChagas disease, caused by the protozoan parasite Trypanosoma cruzi, affects millions globally, with increasing urban cases outside of Latin America. Treatment is based on two compounds, namely, benznidazole (BZ) and nifurtimox, but chronic cases pose several challenges. Targeting lysine acetylation, particularly bromodomain-containing proteins, shows promise as a novel antiparasitic target. Our research focuses on TcBDF3, a cytoplasmic protein, which is crucial for parasite differentiation that recognizes acetylated alpha-tubulin. In our previous study, A1B4 was identified as a high-affinity binder of TcBDF3, showing significant trypanocidal activity with low host toxicity in vitro. In this report, the binding of TcBDF3 to A1B4 was validated using differential scanning fluorescence, fluorescence polarization, and molecular modeling, confirming its specific interaction. Additionally, two new 1,3,4-oxadiazoles derived from A1B4 were identified, which exhibited improved trypanocide activity and cytotoxicity profiles. Furthermore, TcBDF3 was classified for the first time as an atypical divergent member of the bromodomain extraterminal family found in protists and plants. These results make TcBDF3 a unique target due to its localization and known functions not shared with higher eukaryotes, which holds promise for Chagas disease treatment.Ítem Acceso Abierto Alpha-tubulin acetylation in Trypanosoma cruzi: a dynamic instabilityof microtubules is required for replication and cell cycle progression(Frontiers Media, 2021-03-11) Alonso, Victoria Lucía; Carloni, Mara Emilia; Silva Gonçalves, Camila; Martínez Peralta, Gonzálo; Chesta, Maria Eugenia; Pezza, Alejandro; Tavernelli, Luis Emilio; Motta, María Cristina M.; Serra, Esteban CarlosTrypanosomatids have a cytoskeleton arrangement that is simpler than what is found in most eukaryotic cells. However, it is precisely organized and constituted by stable microtubules. Such microtubules compose the mitotic spindle during mitosis, the basal body, the flagellar axoneme and the subpellicular microtubules, which are connected to each other and also to the plasma membrane forming a helical arrangement along the central axis of the parasite cell body. Subpellicular, mitotic and axonemal microtubules are extensively acetylated in Trypanosoma cruzi. Acetylation on lysine (K) 40 of a-tubulin is conserved from lower eukaryotes to mammals and is associated with microtubule stability. It is also known that K40 acetylation occurs significantly on flagella, centrioles, cilia, basal body and the mitotic spindle in eukaryotes. Several tubulin posttranslational modifications, including acetylation of K40, have been cataloged in trypanosomatids, but the functional importance of these modifications for microtubule dynamics and parasite biology remains largely undefined. The primary tubulin acetyltransferase was recently identified in several eukaryotes as Mec-17/ATAT, a Gcn5-related N-acetyltransferase. Here, we report that T. cruzi ATAT acetylates a-tubulin in vivo and is capable of autoacetylation. TcATAT is located in the cytoskeleton and flagella of epimastigotes and colocalizes with acetylated a-tubulin in these structures. We have expressed TcATAT with an HA tag using the inducible vector pTcINDEX-GW in T. cruzi. Over-expression of TcATAT causes increased levels of the alpha tubulin acetylated species, induces morphological and ultrastructural defects, especially in the mitochondrion, and causes a halt in the cell cycle progression of epimastigotes, which is related to an impairment of the kinetoplast division. Finally, as a result of TcATAT over-expression we observed thatÍtem Acceso Abierto Bromodominios citoplasmáticos y acetilación de proteínas no nucleares en Trypanosoma cruzi(Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas, 2015-03-30) Alonso, Victoria Lucía; Serra, Esteban CarlosTrypanosoma cruzi es un protozoo flagelado y el agente etiológico de la enfermedad de Chagas. Tiene un ciclo de vida complejo que alterna entre dos huéspedes y por lo menos tres estadios de desarrollo diferentes. Este parásito presenta características únicas que lo hacen un interesante modelo para el estudio de diversas problemáticas de las células eucariotas. El bromodominio es un dominio proteico de unión a lisinas acetiladas, descripto originariamente en proteínas de unión a histonas acetiladas. Este dominio volutivamente conservado se encuentra comúnmente en proteínas nucleares que cumplen funciones relacionadas con la regulación de la estructura de la cromatina y la activación transcripcional. La capacidad única del bromodominio de reconocer lisinas acetiladas se relaciona con un nuevo mecanismo de regulación de las interacciones proteína-proteína vía acetilación de lisinas, el cual tiene amplias consecuencias en variados procesos celulares. En el genoma de Trypanosoma cruzi están presentes seis secuencias codificantes para proteínas con bromodominios. Nos propusimos caracterizar una de ellas, denominada Factor con Bromodominio 3 (TcBDF3), y evaluar su expresión en el parásito, su localización subcelular, su capacidad de interaccionar con sustratos acetilados y su rol en la biología de los tripanosomas. TcBDF3 se expresa en todos los estadios del ciclo de vida, presentando una localización atípica. En epimastigotes y amastigotes se encuentra en el citoplasma, flagelo y bolsillo flagelar mientras que en tripomastigotes solo en el flagelo. Pudimos determinar que este bromodominio es capaz de interaccionar con la α-tubulina acetilada presente en el citoesqueleto y flagelo de T. cruzi. Además, esta unión perece ser específica ya que no es capaz de reconocer histonas acetiladas. La sobre-expresión de una versión truncada de TcBDF3 hace que se pierda la localización flagelar y disminuye la capacidad de los epimastigotes de diferenciarse a tripomastigotes, proceso denominado metaciclogénesis. Al sobre-expresar de manera inducible una versión salvaje y una doble mutante puntual de TcBDF3 observamos nuevamente una disminución en la tasa de metaciclogénesis y efectos en las tasas de infección in vitro (esta doble mutante no posee la capacidad de unir α-tubulina acetilada). Estos resultados sugieren que este bromodominio es esencial para Trypanosoma cruzi y jugaría un papel importante en el proceso de diferenciación e infección. Finalmente, ensayamos distintos inhibidores de bromodominios comerciales sobre epimastigotes de T. cruzi y determinamos la capacidad de uno de ellos de unirse a TcBDF3 recombinante. Los resultados obtenidos durante este trabajo de tesis nos permiten proponer que TcBDF3 es esencial para el crecimiento y diferenciación de T. cruzi y que podría ser un blanco interesante para el desarrollo de nuevas drogas tripanosidas. Por otro lado, se abren nuevos interrogantes sobre el rol de la acetilación en la dinámica del citoesqueleto y como los bromodominios pueden participar en diversos mecanismos de regulación tanto dentro como fuera del núcleo.Ítem Acceso Abierto Caracterización de la proteína con bromodominio BDF1 de Trypanosoma cruzi (TcBDF1) y su participación en la acetilación de proteínas glicosomales(Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas, 2016-03-14) Ritagliati, Carla; Serra, Esteban CarlosTrypanosoma cruzi es un protozoo flagelado y el agente etiológico de la enfermedad de Chagas. Tiene un ciclo de vida complejo que alterna entre dos huéspedes y por lo menos tres estadíos de desarrollo diferentes. Actualmente, el tratamiento de la enfermedad de Chagas depende de drogas que son tóxicas para el hospedador y susceptibles a mecanismos de resistencia del parásito. Por lo tanto es necesario encontrar nuevos blancos para determinar alternativas terapeúticas más eficientes. Además, este parásito presenta características únicas que lo hacen un interesante modelo para el estudio de diversos procesos propios de las células eucariotas. La acetilación se ha revelado en los últimos años como una de las modificaciones postranscripcionales más frecuentes, tanto en bacterias como en células eucariotas, de naturaleza conservada y ubicua, lo que sugiere un alto poder regulatorio que lleva a compararla con la fosforilación de proteínas. Esta es una modificación covalente llevada a cabo por enzimas denominadas Lisina Acetiltransferasas y Lisina Deacetilasas. El bromodominio, es el único dominio proteico de unión a lisina acetilada, presente casi exclusivamente en proteínas de localización nuclear. Para entender mejor la acetilación como mecanismo de regulación celular nos propusimos identificar las proteínas acetiladas de T. cruzi, caracterizar el Factor con Bromodominio 1 (TcBDF1) y dos lisina deacetilasas de la familia Sir2 (sirtuinas, TcSIR2RP1 y TcSIR2RP3). En este trabajo se identificaron por primera vez proteínas acetiladas (150) en T. cruzi, distribuídas entre los distintos compartimentos celulares e involucradas en una amplia variedad de funciones. Como era de esperar, el número de proteínas acetiladas en T. cruzi es más cercano al de Toxoplasma y Plasmodium falciparum que al de células de mamíferos o plantas. A pesar de que el número de proteínas acetiladas detectadas depende de la profundidad del análisis, los datos presentados sugieren fuertemente que la acetilación es una modificación crítica encontrada en todos los reinos y que hay una presión selectiva para mantener esta actividad aún después de una adaptación a vida parasitaria. TcBDF1 se expresa en todos los estadíos del ciclo de vida, pero presenta una expresión diferencial, siendo más abundante en el estadío infectivo (tripomastigotes) que en lo replicativos (epimastigotes y amastigotes). En epimastigotes, se concentra en los glicosomas, dirigido por una señal de transporte peroxisomal tipo II (PTS‐2). La sobreexpresión de la proteína salvaje produce epimastigotes con morfología aberrante que casi no se replican, pero los tripomastigotes sobreexpresantes son más infectivos. Por otro lado, la sobreexpresión de la proteína con una doble mutación puntual en el sitio de unión de la lisina acetilada, no es deletérea para el crecimiento de epimastigotes. Los resultados obtenidos nos permiten proponer que TcBDF1 forma parte de un complejo proteico glicosomal que participaría en la regulación de la acetilación de distintas proteínas presentes en esta organela, modulando la actividad metabólica o el importe de proteínas a la misma. Esto significaría que todos los componentes básicos de las vías de señalización por acetilación nucleares también estarían presentes en el citoplasma y en el glicosoma. TcSIR2RP1 es una proteína citoplasmática que presenta una expresión diferencial en los distintos estadíos: es más abundante en los estadíos replicativos que en el infectivo. Su sobreexpresión no afecta el crecimiento de epimastigotes ni su morfología, pero éstos se diferencian más eficientemente a tripomastigotes y resultan más infectivos. TcSIR2RP3 posee una localización mitocondrial y una expresión diferencial a lo largo del ciclo de vida de T. cruzi, es más abundante en epimastigotes que en amastigotes y no se observa en tripomastigotes, al menos en las condiciones ensayadas. TcSIR2RP3 está involucrada en la respuesta al estrés oxidativo. Su sobreexpresión modifica el crecimiento de epimastigotes pero no afecta su morfología ni su tasa de metaciclogénesis. La capacidad infectiva de los tripomastigotes se ve levemente disminuída pero la tasa de duplicación de los amastigotes intracelulares aumentada. En conjunto, nuestros resultados sugieren que la actividad de las sirtuinas es importante para la proliferación de las formas replicativas, para la interacción huésped‐parásito y para la diferenciación entre los distintos estadíos, pero cada una está involucrada en diferentes procesos. Actualmente, está en auge el desarrollo de inhibidores de deacetilasas por su potencial para el tratamiento de enfermedades infeccionas y no infeccionas. Nuestros resultados contribuyen al conocimiento de la localización y función de estas enzimas y las cepas sobreexpresantes de sirtuinas contruídas en este trabajo pueden ser herramientas utiles para ensayar inhibidores de sirtuinas con fines terapeúticos.Ítem Acceso Abierto Construction of three new Gateway® expression plasmids for Trypanosoma cruzi(Instituto Oswaldo Cruz, 2014-12) Alonso, Victoria Lucía; Ritagliati, Carla; Cribb, Pamela; Serra, Esteban CarlosWe present here three expression plasmids for Trypanosoma cruzi adapted to the Gateway® recombination cloning system. Two of these plasmids were designed to express trypanosomal proteins fused to a double tag for tandem affinity purification (TAPtag). The TAPtag and Gateway® cassette were introduced into an episomal (pTEX) and an integrative (pTREX) plasmid. Both plasmids were assayed by introducing green fluorescent protein (GFP) by recombination and the integrity of the double-tagged protein was determined by western blotting and immunofluorescence microscopy. The third Gateway adapted vector assayed was the inducible pTcINDEX. When tested with GFP, pTcINDEX-GW showed a good response to tetracycline, being less leaky than its precursor (pTcINDEX).Ítem Acceso Abierto Identification of novel bromodomain inhibitors of Trypanosoma cruzi bromodomain factor 2 (TcBDF2) using a fluorescence polarization-based high-throughput assay(American Society for Microbiology, 2024-06-19) Tavernelli, Luis Emilio; Alonso, Victoria Lucía; Peña, Imanol; Rodríguez Araya, Elvio; Manarin, Romina; Cantizani, Juan; Martin, Julio; Salamanca, Juan; Bamborough, Paul; Calderón, Felix; Gabarro, Raquel; Serra, Esteban Carlos; http://orcid.org/0000-0001-5986-7459Bromodomains are structural folds present in all eukaryotic cells that bind to other proteins recognizing acetylated lysines. Most proteins with bromodomains are part of nuclear complexes that interact with acetylated histone residues and regulate DNA replication, transcription, and repair through chromatin structure remodeling. Bromodomain inhibitors are small molecules that bind to the hydrophobic pocket of bromodomains, interfering with the interaction with acetylated histones. Using a fluorescent probe, we have developed an assay to select inhibitors of the bromodomain factor 2 of Trypanosoma cruzi (TcBDF2) using fluorescence polarization. Initially, a library of 28,251 compounds was screened in an endpoint assay. The top 350-ranked compounds were further analyzed in a dose-response assay. From this analysis, seven compounds were obtained that had not been previously characterized as bromodomain inhibitors. Although these compounds did not exhibit significant trypanocidal activity, all showed bona fide interaction with TcBDF2 with dissociation constants between 1 and 3 µM validating these assays to search for bromodomain inhibitors.Ítem Acceso Abierto In vitro drug screening against all life cycle stages of Trypanosoma cruzi using parasites expressing β-galactosidase(MyJove Corporation, 2021-11) Alonso, Victoria Lucía; Manarin, Romina; Perdomo, Virginia Gabriela; Gulin, Julián Ernesto Nicolás; Serra, Esteban Carlos; Cribb, PamelaTrypanosoma cruzi is the causative agent of Chagas disease (ChD), an endemic disease of public health importance in Latin America that also affects many non-endemic countries due to the increase in migration. This disease affects nearly 8 million people, with new cases estimated at 50,000 per year. In the 1960s and 70s, two drugs for ChD treatment were introduced: nifurtimox and benznidazole (BZN). Both are effective in newborns and during the acute phase of the disease but not in the chronic phase, and their use is associated with important side effects. These facts underscore the urgent need to intensify the search for new drugs against T. cruzi. T. cruzi is transmitted through hematophagous insect vectors of the Reduviidae and Hemiptera families. Once in the mammalian host, it multiplies intracellularly as the non-flagellated amastigote form and differentiates into the trypomastigote, the bloodstream non-replicative infective form. Inside the insect vector, trypomastigotes transform into the epimastigote stage and multiply through binary fission. This paper describes an assay based on measuring the activity of the cytoplasmic β-galactosidase released into the culture due to parasites lysis by using the substrate, chlorophenol red β-D-galactopyranoside (CPRG). For this, the T. cruzi Dm28c strain was transfected with a β-galactosidase-overexpressing plasmid and used for in vitro pharmacological screening in epimastigote, trypomastigote, and amastigote stages. This paper also describes how to measure the enzymatic activity in cultured epimastigotes, infected Vero cells with amastigotes, and trypomastigotes released from the cultured cells using the reference drug, benznidazole, as an example. This colorimetric assay is easily performed and can be scaled to a high-throughput format and applied to other T. cruzi strains.Ítem Acceso Abierto Overexpression of bromodomain factor 3 in Trypanosoma cruzi (TcBDF3) affects differentiation of the parasite and protects it against bromodomain inhibitors(Wiley, 2016-06-06) Alonso, Victoria Lucía; Ritagliati, Carla; Cribb, Pamela; Cricco, Julia Alejandra; Serra, Esteban Carlos; Glaxo Smith Kline (GSK): provide I-BET151The bromodomain is the only protein domain known to bind acetylated lysine. In the last few years many bromodomain inhibitors have been developed in order to treat diseases such as cancer caused by aberrant acetylation of lysine residues. We have previously characterized Trypanosoma cruzi bromodomain factor 3 (TcBDF3), a bromodomain with an atypical localization that binds acetylated α-tubulin. In the present work we show that parasites overexpressing TcBDF3 exhibit altered differentiation patterns and are less susceptible to treatment with bromodomain inhibitors. We also demonstrate that recombinant TcBDF3 is able to bind to these inhibitors in vitro in a concentration-dependant manner. In parallel, the overexpression of a mutated version of TcBDF3 negatively affects growth of epimastigotes. Recent results, including the ones presented here, suggest that bromodomain inhibitors can be conceived as a new type of anti-parasitic drug against trypanosomiasis.Ítem Acceso Abierto Overexpression of cytoplasmic TcSIR2RP1 and mitochondrial TcSIR2RP3 impacts on Trypanosoma cruzi growth and cell invasion(Public Library of Science (PLOS), 2015-04-15) Ritagliati, Carla; Alonso, Victoria Lucía; Manarin, Romina; Cribb, Pamela; Serra, Esteban CarlosAbstract Background Trypanosoma cruzi is a protozoan pathogen responsible for Chagas disease. Current therapies are inadequate because of their severe host toxicity and numerous side effects. The identification of new biotargets is essential for the development of more efficient therapeutic alternatives. Inhibition of sirtuins from Trypanosoma brucei and Leishmania ssp. Showed promising results, indicating that these enzymes may be considered as targets for drug discovery in parasite infection. Here, we report the first characterization of the two sirtuins present in T. cruzi. Methodology Dm28c epimastigotes that inducibly overexpress TcSIR2RP1 and TcSIR2RP3 were constructed and used to determine their localizations and functions. These transfected lines were tested regarding their acetylation levels, proliferation and metacyclogenesis rate, viability when treated with sirtuin inhibitors and in vitro infectivity. Conclusion TcSIR2RP1 and TcSIR2RP3 are cytosolic and mitochondrial proteins respectively. Our data suggest that sirtuin activity is important for the proliferation of T. cruzi replicative forms, for the host cell-parasite interplay, and for differentiation among life-cycle stages; but each one performs different roles in most of these processes. Our results increase the knowledge on the localization and function of these enzymes, and the overexpressing T. cruzi strains we obtained can be useful tools for experimental screening of trypanosomatid sirtuin inhibitors.Ítem Acceso Abierto Overexpression of Trypanosoma cruzi high mobility group B protein (TcHMGB) alters the nuclear structure, impairs cytokinesis and reduces the parasite infectivity(Springer Nature, 2019-01-17) Tavernelli, Luis Emilio; Motta, María Cristina M.; Silva Gonçalves, Camila; Santos da Silva, Marcelo; Elías, María Carolina; Alonso, Victoria Lucía; Serra, Esteban Carlos; Cribb, Pamela; Dr. De Gaudenzi, Javier: provide the pTcINDEX-eGFP strainKinetoplastid parasites, included Trypanosoma cruzi, the causal agent of Chagas disease, present a unique genome organization and gene expression. Although they control gene expression mainly post-transcriptionally, chromatin accessibility plays a fundamental role in transcription initiation control. We have previously shown that High Mobility Group B protein from Trypanosoma cruzi (TcHMGB) can bind DNA in vitro. Here, we show that TcHMGB also acts as an architectural protein in vivo, since the overexpression of this protein induces changes in the nuclear structure, mainly the reduction of the nucleolus and a decrease in the heterochromatin:euchromatin ratio. Epimastigote replication rate was markedly reduced presumably due to a delayed cell cycle progression with accumulation of parasites in G2/M phase and impaired cytokinesis. Some functions involved in pathogenesis were also altered in TcHMGB-overexpressing parasites, like the decreased efficiency of trypomastigotes to infect cells in vitro, the reduction of intracellular amastigotes replication and the number of released trypomastigotes. Taken together, our results suggest that the TcHMGB protein is a pleiotropic player that controls cell phenotype and it is involved in key cellular processes.Ítem Acceso Abierto Update on the biological relevance of lysine acetylation as a novel drug target in trypanosomatids(Bentham Science Publishers) Martínez Peralta, Gonzálo; Serra, Esteban Carlos; Alonso, Victoria Lucía