Examinando por Autor "Mojica, María F."
Mostrando 1 - 3 de 3
Resultados por página
Opciones de ordenación
Ítem Acceso Abierto 2-Mercaptomethyl-thiazolidines use conserved aromatic–S interactions to achieve broad-range inhibition of metallo-β-lactamases(Royal Society of Chemistry, 2021-01-05) Rossi, María Agustina; Martínez, Verónica; Hinchliffe, Philip; Mojica, María F.; Castillo, Valerie; Moreno, Diego M.; Smith, Ryan; Spellberg, Brad; Drusano, George L.; Banchio, Claudia; Bonomo, Robert A.; Spencer, James; Vila, Alejandro J.; Mahler, Graciela; https://orcid.org/0000-0003-4720-4070; https://orcid.org/0000-0002-3697-5219; https://orcid.org/0000-0001-8611-4743; https://orcid.org/0000-0002-1380-9824; https://orcid.org/0000-0001-5493-8537; https://orcid.org/0000-0002-4602-0571; https://orcid.org/0000-0002-7978-3233; https://orcid.org/0000-0003-0612-0516Infections caused by multidrug resistant (MDR) bacteria are a major public health threat. Carbapenems are among the most potent antimicrobial agents that are commercially available to treat MDR bacteria. Bacterial production of carbapenem-hydrolysing metallo-β-lactamases (MBLs) challenges their safety and efficacy, with subclass B1 MBLs hydrolysing almost all β-lactam antibiotics. MBL inhibitors would fulfil an urgent clinical need by prolonging the lifetime of these life-saving drugs. Here we report the synthesis and activity of a series of 2-mercaptomethyl-thiazolidines (MMTZs), designed to replicate MBL interactions with reaction intermediates or hydrolysis products. MMTZs are potent competitive inhibitors of B1 MBLs in vitro (e.g., Ki = 0.44 μM vs. NDM-1). Crystal structures of MMTZ complexes reveal similar binding patterns to the most clinically important B1 MBLs (NDM-1, VIM-2 and IMP-1), contrasting with previously studied thiol-based MBL inhibitors, such as bisthiazolidines (BTZs) or captopril stereoisomers, which exhibit lower, more variable potencies and multiple binding modes. MMTZ binding involves thiol coordination to the Zn(II) site and extensive hydrophobic interactions, burying the inhibitor more deeply within the active site than D/L-captopril. Unexpectedly, MMTZ binding features a thioether–π interaction with a conserved active-site aromatic residue, consistent with their equipotent inhibition and similar binding to multiple MBLs. MMTZs penetrate multiple Enterobacterales, inhibit NDM-1 in situ, and restore carbapenem potency against clinical isolates expressing B1 MBLs. Based on their inhibitory profile and lack of eukaryotic cell toxicity, MMTZs represent a promising scaffold for MBL inhibitor development. These results also suggest sulphur–π interactions can be exploited for general ligand design in medicinal chemistry.Ítem Acceso Abierto Gating interactions steer loop conformational changes in the active site of the L1 metallo-β-lactamase(eLife Sciences Publications, 2023-02-24) Zhao, Zhuoran; Shen, Xiayu; Chen, Shuang; Gu, Jing; Wang, Haun; Mojica, María F.; Samanta, Moumita; Bhowmik, Debsindhu; Vila, Alejandro J.; Bonomo, Robert A.; Haider, Shozeb; http://orcid.org/0000-0002-1380-9824; http://orcid.org/0000-0001-7770-9091; http://orcid.org/0000-0002-7978-3233; http://orcid.org/0000-0003-2650-2925β-Lactam antibiotics are the most important and widely used antibacterial agents across the world. However, the widespread dissemination of β-lactamases among pathogenic bacteria limits the efficacy of β-lactam antibiotics. This has created a major public health crisis. The use of β-lactamase inhibitors has proven useful in restoring the activity of β-lactam antibiotics, yet, effective clinically approved inhibitors against class B metallo-β-lactamases are not available. L1, a class B3 enzyme expressed by Stenotrophomonas maltophilia, is a significant contributor to the β-lactam resistance displayed by this opportunistic pathogen. Structurally, L1 is a tetramer with two elongated loops, α3-β7 and β12-α5, present around the active site of each monomer. Residues in these two loops influence substrate/inhibitor binding. To study how the conformational changes of the elongated loops affect the active site in each monomer, enhanced sampling molecular dynamics simulations were performed, Markov State Models were built, and convolutional variational autoencoder-based deep learning was applied. The key identified residues (D150a, H151, P225, Y227, and R236) were mutated and the activity of the generated L1 variants was evaluated in cellbased experiments. The results demonstrate that there are extremely significant gating interactions between α3-β7 and β12-α5 loops. Taken together, the gating interactions with the conformational changes of the key residues play an important role in the structural remodeling of the active site. These observations offer insights into the potential for novel drug development exploiting these gating interactions.Ítem Acceso Abierto Interactions of hydrolyzed β-lactams with the L1 metallo-β-lactamase: crystallography supports stereoselective binding of cephem/carbapenem products(Elsevier, 2023-03-15) Hinchliffe, Philip; Calvopiña, Karina; Rabe, Patrick; Mojica, María F.; Schofield, Christopher J.; Dmitrienko, Gary I.; Bonomo, Robert A.; Vila, Alejandro J.; Spencer, James; https://orcid.org/0000-0002-1380-9824; https://orcid.org/0000-0002-7978-3233L1 is a dizinc subclass B3 metallo-β-lactamase (MBL) that hydrolyzes most β-lactam antibiotics and is a key resistance determinant in the Gram-negative pathogen Stenotrophomonas maltophilia, an important cause of nosocomial infections in immunocompromised patients. L1 is not usefully inhibited by MBL inhibitors in clinical trials, underlying the need for further studies on L1 structure and mechanism. We describe kinetic studies and crystal structures of L1 in complex with hydrolyzed β-lactams from the penam (mecillinam), cephem (cefoxitin/cefmetazole), and carbapenem (tebipenem, doripenem, and panipenem) classes. Despite differences in their structures, all the β-lactam-derived products hydrogen bond to Tyr33, Ser221, and Ser225 and are stabilized by interactions with a conserved hydrophobic pocket. The carbapenem products were modeled as Δ1-imines, with (2S)-stereochemistry. Their binding mode is determined by the presence of a 1β-methyl substituent: the Zn-bridging hydroxide either interacts with the C-6 hydroxyethyl group (1β-hydrogen-containing carbapenems) or is displaced by the C-6 carboxylate (1β-methyl-containing carbapenems). Unexpectedly, the mecillinam product is a rearranged N-formyl amide rather than penicilloic acid, with the N-formyl oxygen interacting with the Zn-bridging hydroxide. NMR studies imply mecillinam rearrangement can occur nonenzymatically in solution. Cephem-derived imine products are bound with (3R)-stereochemistry and retain their 3′ leaving groups, likely representing stable endpoints, rather than intermediates, in MBL-catalyzed hydrolysis. Our structures show preferential complex formation by carbapenem- and cephem-derived species protonated on the equivalent (β) faces and so identify interactions that stabilize diverse hydrolyzed antibiotics. These results may be exploited in developing antibiotics, and β-lactamase inhibitors, that form long-lasting complexes with dizinc MBLs.