Examinando por Autor "Grinblat, Guillermo"
Mostrando 1 - 4 de 4
Resultados por página
Opciones de ordenación
Ítem Acceso Abierto Aprendizaje multiclase de videoimágenes deportivas con arquitecturas profundas(Facultad de Ciencias Exactas, Ingeniería y Agrimensura. Universidad Nacional de Rosario, 2016-03-08) Escarrá, Martín; Grinblat, Guillermo; Granitto, PabloLas arquitecturas profundas permiten representar de manera compacta funciones altamente no lineales. Entre ellas, las redes convolucionales han adquirido gran protagonismo en la clasificación de imágenes debido a la invarianza traslacional de sus features. Este trabajo propone investigar un abordaje naïve para la clasificación de videoimágenes con redes profundas, comparar la performance de redes pre-entrenadas con la de redes ad-hoc y finalmente crear un mecanismo de visualización de la representación interna de la arquitectura. Como ejemplo de aplicación se utilizarán segmentos de videos deportivos con diferentes acciones grupales.Ítem Acceso Abierto Detección de ataques maliciosos con aprendizaje automatizado(2018-07) Perrone, Gustavo Andrés; Grieco, Gustavo; Grinblat, GuillermoAño a año nuestras vidas dependen cada vez más de la tecnología, y de estar conectados a través de Internet. Progresivamente más y más objetos se conectan a Internet para facilitarnos diferentes funcionalidades. Celulares, autos, heladeras, cuentas bancarias, luces, casas, cámaras, televisores, etc. Estas conexiones nos brindan muchas ventajas y facilidades, pero a su vez aumentan la vulnerabilidad frente a ataques cibernéticos maliciosos. Estos pueden hacer caer sistemas, causar perdidas de datos, robar información privada, mover dinero, y muchos otros problemas. En los últimos años han surgido nuevos ataques sofisticado, persistentes y con objetivos concretos. Estas nuevas amenazas son denominadas Advanced Persistent Threats (Amenazas Persistentes y Avanzadas), también llamados APT. Estos ataques pueden perseguir objetivos económicos (espionaje), militares (búsquedas de debilidades, revelación de información), técnicos (credenciales, código fuente) o políticos (provocar desestabilización o desorganización, debilitar misiones diplomáticas). En vista de esta situación, y con el propósito de detectar y protegerse de estos ataques, ya no alcanza con programas tales como sistemas de detección de intrusos o antivirus que utilizan sistemas de reglas para detectar amenazas conocidas, si no que es necesario intentar prever lo desconocido. Día a día se investigan nuevas formas de detectar y prevenir amenazas en la red, generalmente utilizando técnicas de Aprendizaje Automatizado. Desgraciadamente, la detección de estos ataques altamente dirigidos requiere de grandes cantidades de datos que no están disponibles públicamente. Es por eso que esta tesina se centra en la detección de tráfico malicioso más general. Pero ¿qué técnicas son realmente efectivas en la práctica?, ¿son realmente implementables?, ¿qué se necesita para utilizarlas con éxito? En este trabajo muestro los resultados de investigar, probar y analizar varios de los algoritmos publicados, comprobando si son realmente aptos para utilizarse en situaciones reales.Ítem Acceso Abierto Invertibilidad de un generador entrenado adversariamente(Facultad de Ciencias Exactas, Ingeniería y Agrimensura. Universidad Nacional de Rosario, 2019) Pividori, Marcos; Uzal, Lucas; Grinblat, GuillermoLas Redes Adversarias Generativas (GAN) han demostrado resultados excepcionales en el modelado de la distribución de imágenes naturales, aprendiendo representaciones latentes que capturan variaciones semánticas sin supervisión. Además de la generación de imágenes nuevas, es de especial interés explotar la capacidad del generador GAN para modelar el manifold de las imágenes naturales y, por lo tanto, generar cambios creíbles al manipular imágenes. Sin embargo, esta línea de trabajo está condicionada por la calidad de las reconstrucciones obtenidas sobre las imágenes reales al proyectarlas al espacio latente. Mientras que trabajos previos solo han considerado la inversión hasta el espacio latente, en este trabajo proponemos explotar la representación en las capas intermedias del generador, y mostramos que esto conduce a una mayor capacidad. En particular, observamos que la representación después de la primera capa densa, presente en todos los modelos GAN del estado del arte, es lo suficientemente expresiva como para representar imágenes naturales con gran fidelidad visual. Es posible interpolar entre estas imágenes obteniendo una secuencia de nuevas imágenes sintéticas de gran calidad que no se pueden generar desde el espacio latente. Finalmente, como ejemplo de aplicaciones potenciales que surgen de este mecanismo de inversión, mostramos que se puede explotar la representación aprendida en el mapa de atención del generador para obtener una segmentación no supervisada de imágenes naturales.Ítem Acceso Abierto Time–Adaptive Support Vector Machines(Asociación Española de Inteligencia Artificial, 2008) Grinblat, Guillermo; Granitto, Pablo M.; Ceccatto, AlejandroIn this work we propose an adaptive classification method able both to learn and to follow the temporal evolution of a drifting concept. With that purpose we introduce a modified SVM classifier, created using multiple hyperplanes valid only at small temporal intervals (windows). In contrast to other strategies proposed in the literature, our method learns all hyperplanes in a global way, minimizing a cost function that evaluates the error committed by this family of local classifiers plus a measure associated to the VC dimension of the family. We also show how the idea of slowly changing classifiers can be applied to non-linear stationary concepts with results similar to those obtained with normal SVMs using gaussian kernels.