Examinando por Autor "Albanesi, Daniela"
Mostrando 1 - 9 de 9
Resultados por página
Opciones de ordenación
Ítem Acceso Abierto A coiled coil switch mediates cold sensing by the thermosensory protein DesK(Wiley, 2015-10-08) Saita, Emilio Adolfo; Abriata, Luciano Andrés; Tsai, Yi-Ting; Trajtenberg, Felipe; Lemmin, Thomas; Buschiazzo, Alejandro; Dal Peraro, Matteo; De Mendoza, Diego; Albanesi, DanielaThe thermosensor histidine kinase DesK from Bacillus subtilis senses changes in membrane fluidity initiating an adaptive response. Structural changes in DesK have been implicated in transmembrane signaling, but direct evidence is still lacking. On the basis of structure-guided mutagenesis, we now propose a mechanism of DesK-mediated signal sensing and transduction. The data indicate that stabilization/destabilization of a 2-helix coiled coil, which connects the transmembrane sensory domain of DesK to its cytosolic catalytic region, is crucial to control its signaling state. Computational modeling and simulations reveal couplings between protein, water and membrane mechanics. We propose that membrane thickening is the main driving force for signal sensing and that it acts by inducing helix stretching and rotation prompting an asymmetric kinase-competent state. Overall, the known structural changes of the sensor kinase, as well as further dynamic rearrangements that we now predict, consistently link structure determinants to activity modulation.Ítem Acceso Abierto Caracterización estructural y funcional del termosensor DesK de Bacillus subtilis(Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas., 2016-03-28) Saita, Emilio Adolfo; De Mendoza, Diego; Albanesi, Daniela. subtilis se adapta rápidamente a disminuciones de temperatura mediante un mecanismo denominado vía Des, el cual es controlado por el sistema de dos componentes DesK/DesR. El termosensor DesK es el encargado de detectar cambios en la temperatura ambiental y regular la transcripción del gen des que codifica para una Δ5 acil lípido desaturasa, la cual genera insaturaciones en los ácidos grasos de los fosfolípidos de la membrana plasmática modificando la fluidez de la misma. En este trabajo de tesis nos propusimos estudiar los eventos moleculares que tienen lugar en los segmentos transmembrana (TM) de DesK durante la detección de la señal de temperatura. La estrategia inicial que decidimos aplicar es la marcación de spin sitio-dirigida y posterior medición por resonancia paramagnética electrónica (EPR). Dicha estrategia implica la unión de una sonda de spin a residuos de cisteína ubicados en diferentes posiciones de los segmentos TM, para estudiar la dinámica de los mismos en membranas artificiales. Este procedimiento requiere de la purificación de las proteínas en estudio a homogeneidad. Hasta la escritura de esta tesis, los estudios in vitro de DesK completa requerían de la utilización de un sistema de expresión in vitro. Aunque el sistema libre de células ha demostrado ser adecuado para la expresión de DesK, el mismo es muy costosos para ser usado de forma rutinaria. Por este motivo, en una primera instancia nos enfocamos en desarrollar un protocolo que permitiese purificar DesK a partir de cultivos bacterianos, en concentración y pureza suficientes para estudios biofísicos posteriores a un costo reducido. Con este fin, ensayamos diversas estrategias para la expresión y purificación de DesK, incluyendo diferentes vectores de expresión, medios de cultivo, condiciones de crecimiento para la expresión proteica, detergentes para la solubilización de las proteínas de membrana y diversas técnicas cromatográfícas. En función de los resultados obtenidos planificamos un protocolo que permitirán purificar DesK a homogeneidad en micelas de detergente. Resultados posteriores mostraron que la integración de DesK en liposomas permite incrementar la pureza de la misma, indicando que sería posible realizar la marcación con la sonda de spin de las proteínas purificadas en detergente, y posteriormente reconstituir las mismas en liposomas para las subsiguientes mediciones por EPR. Por otra parte, a partir de un análisis informático de covariancia de residuos identificamos pares de aminoácidos con alta probabilidad de interaccionar, ya sea por su cercanía en la estructura cuaternaria, o a través del esqueleto peptídico de DesK. En función a estos resultados seleccionamos posiciones de los segmentos TM que próximamente se reemplazarán por cisteínas, generando variantes de DesK con mutaciones puntuales, para su posterior marcación con la sonda de spin y mediciones de EPR. Estos experimentos ermitirían obtener información estructural y dinámica de los segmentos TM durante la detección de la señal de temperatura. En base a predicciones de estructura secundaria junto con el análisis de las estructuras cristalográficas de la porción catalítica soluble de DesK (DesKC) en distintos estados funcionales, identificamos un motivo de hélices enrolladas (2-HCC) que conecta el dominio TM sensor y el dominio catalítico soluble. La construcción de dos variantes de DesK en las cuales se estabilizó (DesKSTA) o desestabilizó (DesKDEST) el dominio 2-HCC mediante mutaciones puntuales permitió determinar que este motivo juega un rol importante en la regulación de las actividades catalíticas de DesK. Además, de acuerdo con medidas de actividad in vitro de DesK salvaje y DesKSTA insertadas en liposomas, y a ensayos de dinámica molecular de modelos atómicos de DesK salvaje, DesKDEST y DesKSTA, se propuso que en el estado fosfatasa las hélices del segmento TM5 podrían continuar formando un 2-HCC a través de toda la membrana, y que la hidratación de este motivo podría favorecer la apertura del mismo durante la transición al estado auto-quinasa. Por otra parte, se construyeron modelos del estado fosfatasa y auto-quinasa de una quimera funcional de DesK (MS-DesK), la cual posee un único segmento TM por monómero, generado por la fusión de los 17 residuos N-terminales de DesK a los 14 residuos C-terminales del TM5 de DesK. En función a ensayos de dinámica molecular de estos modelos embebidos en bicapas lipídicas de diferente espesor, se propuso un modelo para la detección y transmisión de la señal de temperatura por parte de MS-DesK. En este modelo, a 37 ºC la membrana se encuentra fluida y delgada, y MS-DesK adopta una conformación fosfatasa competente, caracterizada por el enrollamiento de las hélices TM formando un 2-HCC que se prolonga hacia el dominio citoplasmático. Los residuos polares del extremo N-terminal de los segmentos TM se encuentran hidratados debido a la apertura del 2-HCC generada por la bisagra formada entre Gly13 y Pro16, y los dominios de unión a ATP (ABDs) interaccionan fuertemente con el dominio de dimerización y fosforilación de histidina (DHp). Frente a una disminución de la temperatura, la membrana pierde fluidez y se ensancha, generando un movimiento de tijera en el N-terminal de los segmentos TM, favoreciendo la deshidratación de los residuos polares. Los segmentos TM sufren un estiramiento debido al cierre del extremo N-terminal y al segmento citoplasmático KERER que permanece anclado en la interface lípido-agua citoplasmática. Este estiramiento promueve la rotación de las hélices que a su vez provoca el desenrollamiento de los segmentos TM y del 2-HCC. El desenrollamiento estaría favorecido por la hidratación de los residuos polares que se orientan hacia el núcleo del CC. Esta rotación se transmite al DHp, que ahora esconde los residuos hidrofóbicos que le permitían interaccionar con los ABDs. Finalmente, los ABDs quedan libres favoreciendo el estado auto-quinasa competente.Ítem Acceso Abierto Corrigendum: Identification of novel thermosensors in gram-positive pathogens(2022-08-31) Fernández, Pilar; Díaz, Alejandra Raquel; Ré, María Florencia; Porrini, Lucía; De Mendoza, Diego; Albanesi, Daniela; Mansilla, María CeciliaÍtem Embargo Diseño de un termosensor bacteriano funcional en organismos eucariotas(2020) Fernández, Pilar; Mansilla, María Cecilia; Albanesi, DanielaTodos los organismos vivos deben ser capaces de adaptarse a los cambios en la temperatura del medio ambiente, haciendo que la percepción de este estímulo sea una característica esencial para la supervivencia. La vía Des de Bacillus subtilis es el sistema de percepción de frío mejor caracterizado hasta el momento y les permite a las células adaptarse, al inducir la expresión de una desaturasa, Δ5-des. Esta respuesta está controlada por un sistema de dos componentes (SDC) que está compuesto por una histidina quinasa (HQ) sensora, DesK, y un regulador de respuesta (RR), DesR. En este trabajo estudiamos el balance que existe entre los STM de DesK y el dominio de hélice superenrollada N-terminal dinámica (2-HCC, en inglés de 2-Helix Coiled Coil), que los conecta con el extremo citosólico catalítico. Además, caracterizamos molecularmente SDC homólogos a DesK-DesR que son capaces de percibir bajas temperaturas. Debido al amplio conocimiento existente y al generado en este trabajo, nos propusimos adaptar el sistema DesK-DesR-Δ5des a células eucariotas de interés comercial y así conferirles una ventaja adaptativa. Para ello utilizamos el hongo levaduriforme Saccharomyces cerevisiae, y logramos el correcto funcionamiento de un promotor quimérico PDESO y del RR adaptado a células eucariotas DesR-Y. Respecto a la HQ, conseguimos su correcto plegamiento y ubicación en una membrana eucariota, pero no logramos que perciba cambios de temperatura. Este trabajo significa el primer avance para la construcción de un termosensor eucariota basado en un sistema bacteriano.Ítem Acceso Abierto Identification of Novel Thermosensors in Gram-Positive Pathogens(Frontiers Media, 2020-11-26) Fernández, Pilar; Díaz, Alejandra Raquel; Ré, María Florencia; Porrini, Lucía; De Mendoza, Diego; Albanesi, Daniela; Mansilla, María CeciliaÍtem Acceso Abierto Revisiting the coupling of fatty acid to phospholipid synthesis in bacteria with FapR regulation(Wiley, 2020-07-16) Machinandiarena, Federico; Nakamatsu, Leandro; Schujman, Gustavo Enrique; De Mendoza, Diego; Albanesi, Daniela; https://orcid.org/0000-0003-4380-9152A key aspect in membrane biogenesis is the coordination of fatty acid to phospholipid synthesis rates. In most bacteria, PlsX is the first enzyme of the phosphatidic acid synthesis pathway, the common precursor of all phospholipids. Previously, we proposed that PlsX is a key regulatory point that synchronizes the fatty acid synthase II with phospholipid synthesis in Bacillus subtilis. However, understanding the basis of such coordination mechanism remained a challenge in Gram-positive bacteria. Here, we show that the inhibition of fatty acid and phospholipid synthesis caused by PlsX depletion leads to the accumulation of long-chain acyl-ACPs, the end products of the fatty acid synthase II. Hydrolysis of the acyl-ACP pool by heterologous expression of a cytosolic thioesterase relieves the inhibition of fatty acid synthesis, indicating that acyl-ACPs are feedback inhibitors of this metabolic route. Unexpectedly, inactivation of PlsX triggers a large increase of malonyl-CoA leading to induction of the fap regulon. This finding discards the hypothesis, proposed for B. subtilis and extended to other Gram-positive bacteria, that acyl-ACPs are feedback inhibitors of the acetyl-CoA carboxylase. Finally, we propose that the continuous production of malonyl-CoA during phospholipid synthesis inhibition provides an additional mechanism for fine-tuning the coupling between phospholipid and fatty acid production in bacteria with FapR regulation.Ítem Acceso Abierto The distinctive roles played by the superoxide dismutases of the extremophile Acinetobacter sp. Ver3(Nature Research, 2022-03-12) Steimbrüch, Bruno A.; Sartorio, Mariana Gabriela; Cortez, Néstor; Albanesi, Daniela; Lisa, María Natalia; Repizo, Guillermo DanielÍtem Acceso Abierto The phosphatidic acid pathway enzyme PlsX plays both catalytic and channeling roles in bacterial phospholipid synthesis(American Society for Biochemistry and Molecular Biology, 2020-01-09) Sastre, Diego Emiliano; Pulschen, André A.; Basso , Luis G.M.; Benites Pariente, Jhonathan S.; Marques Netto, Caterina G.C.; Machinandiarena, Federico; Albanesi, Daniela; Navarro, Marcos V.A.S.; De Mendoza, Diego; Gueiros-Filho, Frederico J.PlsX is the first enzyme in the pathway that produces phosphatidic acid in Gram-positive bacteria. It makes acylphosphate from acyl-acyl carrier protein (acyl-ACP) and is also involved in coordinating phospholipid and fatty acid biosyntheses. PlsX is a peripheral membrane enzyme in Bacillus subtilis, but how it associates with the membrane remains largely unknown. In the present study, using fluorescence microscopy, liposome sedimentation, differential scanning calorimetry, and acyltransferase assays, we determined that PlsX binds directly to lipid bilayers and identified its membrane anchoring moiety, consisting of a hydrophobic loop located at the tip of two amphipathic dimerization helices. To establish the role of the membrane association of PlsX in acylphosphate synthesis and in the flux through the phosphatidic acid pathway, we then created mutations and gene fusions that prevent PlsX's interaction with the membrane. Interestingly, phospholipid synthesis was severely hampered in cells in which PlsX was detached from the membrane, and results from metabolic labeling indicated that these cells accumulated free fatty acids. Because the same mutations did not affect PlsX transacylase activity, we conclude that membrane association is required for the proper delivery of PlsX's product to PlsY, the next enzyme in the phosphatidic acid pathway. We conclude that PlsX plays a dual role in phospholipid synthesis, acting both as a catalyst and as a chaperone protein that mediates substrate channeling into the pathway.Ítem Acceso Abierto Transmembrane prolines mediate signal sensing and decoding in Bacillus subtilis DesK histidine kinase(American Society for Microbiology, 2019-11-26) Fernández, Pilar; Porrini, Lucía; Albanesi, Daniela; Abriata, Luciano Andrés; Dal Peraro, Matteo; De Mendoza, Diego; Mansilla, María Cecilia