FCEIA - Doctorado en Matemática
URI permanente para esta comunidad
Examinar
Examinando FCEIA - Doctorado en Matemática por Autor "Ponzellini Marinelli, Luciano"
Mostrando 1 - 1 de 1
Resultados por página
Opciones de ordenación
Ítem Acceso Abierto Estabilidad numérica de un método local integral basado en funciones de base radial para problemas de valores de contorno(2021) Ponzellini Marinelli, Luciano; Portapila, MargaritaEl Método de Elementos de Contorno (MEC) es una t´ecnica num´erica reconocida en la matemática aplicada y las ingenierías desde hace más de 50 años. La base de este método es transformar una Ecuación en Derivadas Parciales (EDP) que describa un problema físico en una ecuación integral equivalente haciendo uso de las identidades de Green y teoremas de representación. La teoría de Funciones en Base Radial (FBR) tuvo un desarrollo considerable en los últimos años debido a su alto orden de exactitud, flexibilidad para geometrías no triviales, eficiencia computacional y facilidad de implementación. Sin embargo, la experimentación numérica mostró que cuando ε → 0 el error de interpolación decrece hasta cierto valor a partir del cual se desestabiliza debido al mal condicionamiento de la matriz de interpolación. El objetivo principal de nuestro trabajo consiste en estabilizar el error de un método local integral para resolver EDP a partir de lograr estabilizar el error en las interpolaciones locales cuando el parámetro de forma tiende a cero y evitar el mal condicionamiento de los sistemas locales.