
c© M. Cristiá

Test Case Generation from a Z Specification of the Landing
Gear System

Maximiliano Cristiá
CIFASIS and UNR, Rosario, Argentina
cristia@cifasis-conicet.gov.ar

In this technical report we present the results of a case study on the application of a model-based
testing method (MBT) to a real-world problem from the aviation industry. The requirements were
proposed by engineers working for the European aviation industry and comprise the landing gear
system (LGS) of an aircraft. We developed a complete Z specification of the control software of the
LGS. Then, we automatically generated abstract test cases by applying FASTEST (a tool implement-
ing the Test Template Framework, which is a MBT method). These test cases cover all the functional
and real-time scenarios described in the requirements. The manual work required to generate them
is minimum.

Contents

1 Introduction 2
1.1 Introduction to Model-Based Testing . 3

1.1.1 Software Testing . 3
1.1.2 Functional Correctness and Formal Specifications 4
1.1.3 Model-Based Testing . 5

2 Introduction to the Z Notation 6
2.1 The Requirements . 6
2.2 The Form of a Z Specification . 6
2.3 Basic Types . 7
2.4 The State Space . 7
2.5 Opening the First Savings Account . 8
2.6 State Invariants . 11

3 Introduction to the Test Template Framework 12
3.1 The Valid Input Space of a Z Operation . 12
3.2 Applying Testing Tactics . 13
3.3 Building a Tree of Test Specifications . 16
3.4 Pruning Inconsistent Test Specifications . 17
3.5 Deriving Abstract Test Cases from Test Specifications 17
3.6 Brief Discussion of the TTF . 18

3.6.1 Advantages of the TTF . 18
3.6.2 The Form of Test Cases in the TTF . 18
3.6.3 Test Oracles in the TTF . 19
3.6.4 State Invariants in the TTF . 19

2 Z Specification of the Landing Gear System

4 The Z Specification of the Landing Gear System 20
4.1 Basic Types . 20
4.2 State of the Controlling Software . 21
4.3 Initial states . 27
4.4 Assumptions and Limitations of the Z Specification . 29
4.5 Operations Concerning Sensor Readings and its Anomalies 30

4.5.1 Gears in Extended Position . 31
4.5.2 Gears in Retracted Position . 32
4.5.3 Shock Absorbers . 33
4.5.4 Doors Open . 34
4.5.5 Doors Closed . 35
4.5.6 Hydraulic Circuit . 36
4.5.7 Analogical Switch . 37

4.6 Operations Concerning Normal Mode . 38
4.6.1 Interaction with the cockpit . 39
4.6.2 Retraction sequence . 40
4.6.3 Outgoing sequence . 48

4.7 Time Advance . 53
4.8 Operations Concerning Health Monitoring . 53

4.8.1 Anomalies Related to the Analogical Switch 53
4.8.2 Anomalies Related to the Hydraulic Circuit . 55
4.8.3 Anomalies Related to Doors Motion . 56
4.8.4 Anomalies Related to Gears Motion . 57

5 Test Case Generation from the Z Specification 62

6 Conclusions 62

A Test Conditions 64

B Abstract Test Cases 108

1 Introduction

This answer to the case study shows how (abstract) test cases can be (almost) automatically generated
from a Z specification of the landing gear system (LGS). In this way, the cost of writing the specification
is paid-off by using the specification not only to produce the implementation but also to test it. Test
case generation from a formal specification is within the scope of model-based testing (MBT). There are
many different MBT methods to generate test cases [20, 26, 5]. Some of them use Z as the modeling
language but there are methods for other formal (and semi-formal) notations, including some within the
scope of ABZ 2014.

In this technical report a particular MBT method known as the Test Template Framework is used.
The TTF uses Z as the modeling language and is particularly oriented towards functional unit testing
[37]. Recently tool support for the TTF was provided by Fastest [11]. Even more recently Fastest
started to use {log} (pronounced ‘setlog’) as a test case generator [13]. {log} is a Constraint Logic
Programming (CLP) language that embodies the fundamental forms of set designation and a number of

M. Cristiá 3

primitive operations for set management. Fastest automates most of the steps of a TTF testing campaing
upt to the production of abstract test cases. Hence, the Z specification of the LGS was loaded in Fastest
to automatically generate test cases.

Test cases produced by Fastest are abstract test cases in the sense that they are pieces of Z text. In
other words, the variables and constants participating in one of these test cases are defined at the Z level.
Hence, these test cases cannot be provided to the implementation of the LGS. However, they can be semi-
automatically refined to the implementation by writing so-called refinement rules in a simple language
that allows engineers to connect abstract test cases with the implementation technology [12]. Test case
refinement is out of the scope of this document and currently is not fully implemented in Fastest.

The Z specification presented here specifies only the controlling software [6, Sect. 4]. It was not
formally verified basically due to resource availability. However, it would be desirable to prove that it
verifies some state invariants and, more importantly, that it verifies the expected properties proposed by
the designers of the LGS [6, Sect. 5]. Had the authors have the time for such verification they would have
used the Z/EVES theorem prover [33]. However, to be able to prove some of this properties it would be
necessary to specify some domain properties described in the requirements document [6, Sect. 3] and
perhaps the extensions to the Z notation proposed by Evans [16] would also be necessary.

This technical report introduces many concepts (such as MBT, the Z notation, the TTF, etc.) to make
it self-contained. It also includes the complete list of the satisfiable test conditions (Appendix A) and
abstract test cases (Appendix B) automatically generated by Fastest.

1.1 Introduction to Model-Based Testing

Software construction has proved to be more complex than expected. Most often software projects run
beyond budget, are delivered late and having many errors. Only an insignificant portion of the products of
the software industry are sold with warranty. There is a number of reasons for this state of the practice,
but companies usually complain about the costs of software verification as the cause of not doing it
thoroughly [8, page 20] [3, page 88] [30, page 157] [27] [32, table ES-1 at page ES-5]. Reducing the
costs of verification would imply more projects within budget and less errors. One of the most promising
strategies for reducing the costs of verification is making it as automatic as possible. On the other hand,
the software industry relies almost exclusively on testing to perform the functional verification of its
products. Currently, testing is essentially a manual activity that automates only the most trivial tasks
[28, 32].

1.1.1 Software Testing

Software testing can be defined as the dynamic verification of a program by running it on a finite set of
carefully chosen test cases, from the usually infinite input domain, and comparing the actual behavior
with respect to the expected one [15, 38]. We want to remark the following:

• Testing implies running the program as opposed to, say, static analysis performed on the source
code.

• The set of test cases on which the program will be executed is finite and usually very small,
compared with the size of the input domain.

• These test cases must be selected, i.e there are some criteria or rules that must be followed in order
to chose test cases. It would be wrong a selection process guided by the mood of the engineer.

4 Z Specification of the Landing Gear System

Component testing Integration testing User testing

Acceptance
testing

System
testing

Subsystem
testing

Module
testing

Unit testing

Figure 1: Steps of the testing process

• The output produced by the program for each test case must be compared with the expected output.
If both agree then the program is correct on that test case; otherwise some error has been found.
The artefact that helps to decide the presence of an error is called oracle.

Many qualities of a program can be tested. For example, performance, portability, usability, security
and so on. Although they are all important, functional correctness is perhaps the one on which industry
pays more attention. In many contexts, for instance, performing poorly is bad but performing wrongly is
worse.

Traditionally, the testing process has been divided into five steps as shown in Figure 1. The idea is
to start testing small portions of the system under test (SUT) called units—usually they are subroutines,
procedures or functions—in such a way that once they have passed all the tests, they are progressively
assembled together. As new units are integrated, the resulting modules are tested. Sometimes it is
possible to independently test subsystems of the SUT. Finally, the full system is tested by users. In this
way, errors are discovered as earlier as possible.

Fastest focuses on improving a particular unit testing method and providing tool support for the
selection of functional test cases for it, as we will shortly see.

1.1.2 Functional Correctness and Formal Specifications

The last item above suggests that there must be some way of determining what the expected output of a
program is. In other words, there should be a way of determining whether the program is functionally
correct or not. The classical definition of functional correctness is: a program is functionally correct
if it behaves according to its functional specification [19, page 17]. This means that two documents or
descriptions are needed to perform functional verification: the program itself and its functional specifi-
cation. In turn, this implies that functional testing is possible only if a specification of the program or
SUT is present. The functional specification is sometimes used as the oracle because it is, in fact, the
definition of correctness for its implementation.

Furthermore, if automation of the testing process is the goal, then some kind of formal specification
is mandatory because otherwise mechanical analysis of the specification becomes unfeasible, turning
testing automation unrealistic. A specification is formal if it is written in a formal notation or language

M. Cristiá 5

[19, page 167]. Formal notations or formalisms for specifying software systems are known as formal
methods and have a long and well-established tradition within the Software Engineering community
[7, 22].

Fastest focuses on functional testing based on a formal functional specification of the SUT.

1.1.3 Model-Based Testing

When testing and formal specifications are combined we enter into the scope of Model-Based Testing
(MBT). MBT is a well-known technique aimed at testing software systems analyzing a formal model
or specification of the SUT [38, 21]. That is, MBT approaches generate test cases from the formal
specification of the SUT. The fundamental hypothesis behind MBT is that, as a program is correct if it
satisfies its specification, then the specification is an excellent source of test cases.

One of the possible processes of testing a system through a MBT method is depicted in Figure 2.
The first step is to analyze the model of the SUT looking for abstract test cases. Usually, MBT methods
divides this step into two activities: firstly, test specifications are generated, and, secondly, abstract test
cases are derived from them. Although the form of test specifications depends on the particular MBT
method, they can be thought as sets of abstract test cases. Test cases produced during the “Generation”
step are abstract in the sense that they are written in the same language of the model, making them, in
most of the MBT methods, not executable. In effect, during the “Refinement” step these abstract test
cases are made executable by a process that can be called refinement, concretization or reification. Note
that this not necessarily means that the SUT has been refined from the model; it only says that abstract
test cases must be refined. Once test cases have been refined they have to be executed by running the
program on each of them. In doing so, the program produces some output for each test case. At this
point, some way of using the model as an oracle, to decide whether a given test case has found an error
or not, is needed. There are two possibilities depending on the MBT method and the formal notation
being used:

1. When the model is analyzed during the “Generation” step, each abstract test case is bound to its
corresponding expected result. Later, these expected results are refined along the same lines of test
cases. Finally, the actual output of the program is compared with the result of refining the expected
results.

2. The output produced by the SUT for each test case is abstracted at the level of the specification.
Then, each abstract test case and its corresponding abstract(ed) output are replaced in the specifi-
cation. If the specification reduces to true then no error was found; if it reduces to false then an
error was found.

MBT has been applied to models written in different formal notations such as Z [37], Finite State
Machines (FSM) and their extensions [20], B [26], algebraic specifications [5], and so on. However,
most of the work has focused on the “Generation” step from some variant of FSM for system testing
[21, 29]. One of the greatest advantages of working with FSM lays in the degree of automation that can
be achieved by many MBT methods. On the other hand, FSM pose a strong limit on the kind of systems
that can be specified.

Fastest provides support for the “Generation” step from Z specifications as a way to widen the class
of systems that can be specified.

6 Z Specification of the Landing Gear System

Generation
Model

Program
Execution Execution

Abstract
test cases

Concrete
test cases

Concrete
output

Abstract
output

Verification

Refinement Abstraction
Programming

Requirements

Formalization

Figure 2: A general description of the MBT process

2 Introduction to the Z Notation

Here we introduce the Z notation by means of an example. It is assumed that the reader is fluent in
predicate logic and discrete mathematics. Z is introduced just to the point needed to read the rest of this
document; for deeper presentations consult any textbook on Z. The Z notation is a formal method based
on first-order logic and Zermelo-Fraenkel set theory that has been extensively studied and applied to a
range of software systems [22, 2]. There are two slightly different versions of the language. The first to
appear is known as the Spivey version [35], and the second one is referred as Standard Z because it is the
result of a standardization process carried out by ISO [23]. We will use the second one.

2.1 The Requirements

Think in the savings accounts of a bank. Each account is identified by a so-called account number.
Clients can share an account and each client can own many accounts—some of which might be shared
with other clients, and some not. The bank requires to keep record of just the balance of each account,
and the ID and name of each client. Any person can open an account in the bank becoming its first owner.
Owners can add and remove other owners and can withdraw money from their accounts and check the
balance of their accounts. Any person can deposit money in any account.

2.2 The Form of a Z Specification

The Z language can be used in different ways but there is a de-facto usage style. Any Z specification
takes the form of a state machine—not necessarily a finite one. This machine is defined by giving its state
space and the transitions between those states. The state space is given by declaring a tuple of typed state
variables. A transition, called operation in Z, is defined by specifying its signature, its preconditions
and its postconditions. The signature of an operation includes input, state and output variables. Each

M. Cristiá 7

operation can change the state of the machine. State change is described by giving the relation between
before-state and after-state variables.

2.3 Basic Types

As we have said, each savings account is identified by an account number. We need a way to name these
account numbers. Since account numbers are used just as identifiers we can abstract them away, not
caring about their internal structure. Z provides so-called basic or given types for these cases. The Z
syntax for introducing a basic type is:

[ACCNUM]

In this way, it is possible to declare variables of type ACCNUM and it is possible to build more
complex types involving it—for instance the type of all sets of account numbers is PACCNUM. Along
the same lines, we introduce basic types for the ID’s of clients and their names:

[UID,NAME]

We represent the money that clients can deposit and withdraw and the balance of savings accounts
as natural numbers. We think that specifying them as real numbers does not add any significant detail to
the model, but makes it truly complicated since Z does not provides a native type for real numbers. If the
decimal positions are really needed, then we can think that each natural number used in the specification
is the result of multiplying the corresponding real number by a convenient power of 10—for instance,
all amounts of money are multiplied by 100. The type for the integer numbers, Z, is built-in in Z. The
notation also includes the set of natural numbers, N. Then, we define:

MONEY == N

BALANCE == N

In other words, we introduce two synonymous for the set of natural numbers so the specification is
more readable.

2.4 The State Space

The state space is defined as follows:

Bank
clients : UID 7→ NAME
balances : ACCNUM 7→ BALANCE
owners : UID↔ ACCNUM

This construction is called schema; each schema has a name that can be used in other schemas. In
particular this is a state schema because it only declares state variables. In effect, it declares three state
variables by giving their names and types. Each state of the system corresponds to a particular valuation
of these three variables. The type constructor 7→ defines partial functions1. Then, clients is a partial

1It must be noted that the Z type system is not as strong as the type systems of other formalisms, such as Coq [9]. So we
will be as formal as is usual in the Z community regarding its type system.

8 Z Specification of the Landing Gear System

function from UID onto NAME. It makes sense to define such a function because each person has a
unique UID but not a unique name; and it makes sense to make clients partial because not every person
is a client of the bank all the time. The same is valid for balances: there is a functional relationship
between account numbers and balances, and not all the account numbers are used all the time in the
bank. The symbol ↔ defines binary relations. It is correct to define owners as a relation, and not as
a function, because a given client may own more than one account and each savings account may be
owned by many clients.

Now, we can define the initial state of the system as follows:

InitBank
Bank

clients = /0
balances = /0
owners = /0

InitBank is another schema. The upper part is the declaration part and the lower part is the predicate
part—this one is optional and is absent from Bank. In the declaration part we can declare variables or use
schema inclusion. The latter means that we can write the name of another schema instead of declaring
their variables. This allows us to reuse schemas. In this case the predicate part says that each variable
is equal to the empty set. It is important to remark that the = symbol is logical equality and not an
imperative assignment—Z has no notion of control flow. In Z, relations and functions are sets of ordered
pairs. Being sets they can be compared with the empty set. The symbol /0 is polymorphic in Z: it is the
same for all types.

Since in Z each variable has a type, all the expressions are typed and then it is possible to implement
a type-checker for the language [33, 17].

2.5 Opening the First Savings Account

Now we can start defining each operation of the system. In order to keep this introduction short we
specify just one operation and in doing so we introduce some more Z concepts. The operation describes
how the first savings account is opened for a given person requesting it.

NewClientOk
∆Bank
u? : UID
name? : NAME
n? : ACCNUM

u? /∈ domclients
n? /∈ dombalances
clients′ = clients∪{u? 7→ name?}
balances′ = balances∪{n? 7→ 0}
owners′ = owners∪{u? 7→ n?}

The expression ∆Bank in the declaration part is a shorthand for including the schemas Bank and
Bank′. We already know what it means including Bank. Bank′ is equal to Bank but all of its variables

M. Cristiá 9

are decorated with a prime. Therefore, Bank′ declares clients′, balances′ and owners′ of the same types
than those in Bank. When a state variable is decorated with the prime it is assumed to be an after-state
variable. The net effect of including ∆Bank is, then, the declaration of three before-state variables and
three after-state variables. A ∆ expression is included in every operation schema that produces a state
change.

Variables decorated with a question mark, like u?, are assumed to be input variables. Then, u?
represents the ID of the person willing to open a savings account in the bank, and name? is his/her name.
To simplify the specification a little bit we assume that a bank’s clerk provides the account number, n?,
when the operation is called—instead of the system generating it.

Note that the predicate part consists of five atomic predicates. When two or more predicates are in
different rows they are assumed to be a conjunction. In other words, for instance:

u? /∈ domclients
n? /∈ dombalances

is equivalent to:

u? /∈ domclients ∧ n? /∈ dombalances

Z uses the standard symbols of discrete mathematics and set theory so we think it will not be difficult
for the reader to understand each predicate. Remember that functions and relations are sets of ordered
pairs so they can participate in set expressions. For instance, balances∪{n? 7→ 0} adds an ordered pair
to clients. Again, the expression balances′ = balances∪{n? 7→ 0} is actually a predicate saying that
balances′ is equal to balances∪{n? 7→ 0}, and not that the latter is assigned to balances′. In other words,
this predicate says that the value of balances in the after-state is equal to the value of balances in the
before-state plus the ordered pair n? 7→ 0.

Note that operations are defined by giving their preconditions and postconditions. In NewClientOk
the preconditions are:

u? /∈ domclients
n? /∈ dombalances

while its postconditions are:

clients′ = clients∪{u? 7→ name?}
balances′ = balances∪{n? 7→ 0}
owners′ = owners∪{u? 7→ n?}

Therefore, NewClientOK does not say what the system shall do when u? /∈ domclients ∧ n? /∈
dombalances does not hold. The bank says that nothing has to be done when either the person re-
questing the account is already a client or when the account number chosen by the clerk is already in use.
Then, we define a new schema for the first case:

ClientAlreadyExists == [ΞBank; u? : UID|u? ∈ domclients]

This is another way of writing schemas, called horizontal form. It has the same meaning than:

10 Z Specification of the Landing Gear System

ClientAlreadyExists
ΞBank
u? : UID

u? ∈ domclients

The expression ΞBank is a shorthand for:

ΞBank
∆Bank

clients′ = clients
balances′ = balances
owners′ = owners

If a Ξ expression is included in an operation schema, it means that the operation will not produce
a state change because all the primed state variables are equal to their unprimed counterparts. When a
schema whose predicate part is not empty is included in another schema, the net effect is twofold: (a) the
declaration part of the former is included in the declaration part of the latter; and (b) the predicate of the
former is conjoined to the predicate of the latter. Hence, ClientAlreadyExists could have been written as
follows:

ClientAlreadyExists
clients,clients′ : UID 7→ NAME
balances,balances′ : ACCNUM 7→ BALANCE
owners,owners′ : UID↔ ACCNUM
u? : UID

u? ∈ domclients
clients′ = clients
balances′ = balances
owners′ = owners

We define the following schema for the negation of the remaining precondition:

AccountAlreadyExists ==
[ΞBank; n? : ACCNUM|n? ∈ dombalances]

Usually, schemas like NewClientOk are said to specify the successful cases or situations, while
schemas like ClientAlreadyExists and AccountAlreadyExists specify the erroneous cases. Finally, we
assemble the three schemas to define the total operation—i.e. an operation whose precondition is equiv-
alent to true—for a person opening his/her first savings account in the bank:

NewClient ==
NewClientOk
∨ ClientAlreadyExists
∨ AccountAlreadyExists

M. Cristiá 11

NewClient is defined by a so-called schema expression. Schema expressions are expressions involv-
ing schema names and logical connectives. They can be very complex but we will not need all this
complexity in this thesis. Let A be the schema defined as [DA|PA] where DA is the declaration part and
PA is its predicate. Similarly, let B the schema defined by [DB|PB]. Then, the schema C defined by A~B,
where ~ is any of ∧, ∨ and⇒, is the schema [DA; DB|PA ~PB]. In other words, the declaration parts of
the schemas involved in a schema expression are joined together and the predicates are connected with
the same connectors used in the expression—if there is some clash in the declaration parts it must be
resolved by the user. In symbols:

A == [DA|PA]

B == [DB|PB]

C == A~B, where ~ is any of ∧,∨,⇒ then

C == [DA; DB|PA ~PB]

Essentially, this is all the reader needs to know about Z to understand the rest of this thesis. Actually,
Fastest, the tool we have developed, does not support the whole language, but it does support a fully
expressive subset, as we discuss in Chapter ??. Therefore, we now introduce the rest of the savings
account specification but including informal comments only when some new Z feature is introduced.

2.6 State Invariants

A predicate is said to be a state invariant if it holds in every state of the system. The usual Z style includes
state invariants in the state schema. For example, the state schema for the savings account system would
have been:

Bank
clients : UID 7→ NAME
balances : ACCNUM 7→ BALANCE
owners : UID↔ ACCNUM

domclients = domowners
dombalances = ranowners
ranbalances⊆ N

instead of the one we have defined at the beginning of this section. Note that, in this way the state
invariant is conjoined to the predicate part of every schema where ∆Bank or ΞBank are included. This is
a simple technique that guarantees that every operation will preserve the state invariant.

However, for reasons that we are going to explain in Section 3.6.4, we deal with state invariants in a
different fashion. We first define a schema stating the invariant:

BankInv
Bank

domclients = domowners
dombalances = ranowners
ranbalances⊆ N

12 Z Specification of the Landing Gear System

and then we require a proof obligation stating that each operation preserves it. For example:

Theorem NewClientInv
BankInv ∧ NewClient⇒ BankInv′

Discharging such proof obligations is a responsibility of those who write the specification. This way
of writing invariants is similar to other formal methods such as TLA+ [25] and B [1].

3 Introduction to the Test Template Framework

As we have said, the TTF is a particular method for the “Generation” step of the MBT process (Figure
2), specially well suited for unit testing from Z specifications. Each operation within the specification is
analysed to derive or generate abstract test cases. This analysis consists of the following steps:

1. Consider the VIS of each Z operation

2. Apply one or more testing tactics in order to partition the input space

3. Build a tree of test specifications

4. Prune inconsistent test specifications

5. Find one abstract test case from each remaining test specification

Before executing the first step, engineers have to select those schemas that are operations. In effect,
not all schemas representing operations have to be selected because some of them are used in the defini-
tion of others. For example, in the specification of the savings account system ClientAlreadyExists and
AccountAlreadyExists, among others, will not be selected because by selecting NewClient test cases for
them would also be generated.

3.1 The Valid Input Space of a Z Operation

The VIS of a Z operation is derived from the its Input Space (IS). The IS of an operation is the schema
declaring all the state and input variables declared in the operation. For example, the IS of NewClient is:

NewClientIS ==
[clients : UID 7→ NAME; owners : UID↔ ACCNUM;
balances : ACCNUM 7→ BALANCE; u? : UID;
name? : NAME; n? : ACCNUM]

The VIS is the schema that restricts the IS to verify the precondition of the operation:

OpVIS == [OpIS|pre Op]

Informally, the precondition of an operation is that part of its predicate that does not contain output
nor primed-state variables. Z provides the pre operation which takes a schema and returns its precondi-
tion. The VIS of a total operation is equal to its IS, since, by definition, its precondition is equivalent to
true. NewClient is a total operation, therefore, we have:

NewClientVIS == NewClientIS

M. Cristiá 13

3.2 Applying Testing Tactics

The key aspect of the TTF is to partition the VIS of each operation into equivalence classes by applying
one or more testing tactics. These equivalence classes are called test classes, test objectives, test tem-
plates or test specifications; we will use the latter. In other words a test specification S of some operation
Op is a set such that S ⊆ OpVIS. Test specifications obtained in this way can be further subdivided into
more test specifications by applying other testing tactics. The net effect of this technique is a progres-
sive partition of the VIS into more restrictive test specifications. This procedure can continue until the
engineer is satisfied with the possible accuracy of the test specifications with respect to their ability to
uncover errors in the implementation. Once the engineering is done with partitioning, she/he has to take
one abstract test case from each resulting test specification.

Although, theoretically, testing tactics should produce a partition, in practice this is not always the
case. Producing a partition is relevant because in some way it guarantees both full coverage of the VIS
and non repetition of test cases. Given a VIS S a partition for S is a family of test specifications {Si}i∈I

for some set of indexes I, such that:⋃
i∈I

Si = S (1)

Si∩Sj = /0 for all i, j ∈ I and i 6= j (2)

Therefore, by taking an abstract test cases from every Si, S is fully covered and no two test cases test
the same. On the contrary, if {Si}i∈I is not a partition then either something is not tested or two or more
test cases will test the same. In this sense, the TTF relies on the uniformity hypothesis [18], which can
be stated as follows:

Uniformity hypothesis. Let Si be a test specification of some partition for some program P.
Let t1 and t2 be two elements of Si. The uniformity hypothesis says, then, that P passes t1 if
and only if P passes t2.

In other words, the hypothesis says that each test specification is an equivalence class with respect
to the way the program behaves for any element of it. Although this hypothesis cannot be proved many
MBT methods rely on it [21]. From a safety perspective, if a testing tactic does not produce a partition
of a test specification, then it should at least verify equation (1).

Therefore, testing tactics are the tools that testers have to partition the VIS of each operation. A tactic
indicates how the current test specification must be partitioned by giving a set of predicates that are used
to define each partition. Each of these predicates is called characteristic predicate; i.e. it characterizes a
test specification. Each testing tactic partitions a test specification in a different way aiming at producing
test cases to test different aspects of a program.

The original authors of the TTF proposed some testing tactics [36, 37] and we propose more (see
Chapter ??). In this section we will apply two of the original tactics to the NewClient operation. The
first one we will apply, called DNF, was proposed even before the TTF [14], and in general it does not
produce a partition . It says:

1. Write the predicate of the operation in DNF.
Writing a predicate in DNF means writing it as a disjunction of conjunctions of atomic predicates
or negations of atomic predicates.

2. Take the precondition of each resulting disjunct.

14 Z Specification of the Landing Gear System

S = /0,T = /0 S 6= /0,T 6= /0,S⊂ T
S = /0,T 6= /0 S 6= /0,T 6= /0,T ⊂ S
S 6= /0,T = /0 S 6= /0,T 6= /0,T = S
S 6= /0,T 6= /0,S∩T = /0 S 6= /0,T 6= /0,S∩T 6= /0,¬ (S⊆ T),

¬ (T ⊆ S),S 6= T

Figure 3: Standard partition for S∪T , S∩T and S\T

3. Take these predicates as the characteristic predicates of the partition.

Let’s apply it on NewClient before explaining it informally. The first step, in this example, is easy
because the operation is already in DNF. Then, we get the following test specifications:

NewClientDNF
1 ==

[NewClientVIS|u? /∈ domclients ∧ n? /∈ dombalances]

NewClientDNF
2 == [NewClientVIS|u? ∈ domclients]

NewClientDNF
3 == [NewClientVIS|n? ∈ dombalances]

First, note that test specifications are written in Z. This is a virtue of the TTF since it keeps all
the main artifacts within the same notation. Second, note how test specifications are linked to the VIS
by schema inclusion. Third, observe that this is not a partition of the VIS because, for example, the
following abstract test case satisfies NewClientDNF

2 and NewClientDNF
3 :

clients = {uid0 7→ name0},
balances = {accnum0 7→ 1},
owners = {uid0 7→ name0},
u? = uid0,
n? = accnum0

However, DNF is a very good tactic because it generates test specifications that will test the main
functional alternatives of the implementation. Nevertheless, it does not produce test cases to test the
implementation of complex mathematical operators, as noted Stocks and Carrington in their seminal
papers. In effect, most likely a Z specification will have mathematical operators—such us ∪ and ⊕—
that do not have a basic representation in most programming languages; i.e. they need a non trivial
implementation.

For this cases, the TTF proposes a powerful testing tactic called SP. This tactic is parametrized by a
mathematical operator. Then, the characteristic predicates indicated by SP to partition a test specifica-
tion depends on a mathematical operator. Figure 3 shows the characteristic predicates proposed for the
standard partition of ∪, ∩ or \ [37]. Note that other partitions can be proposed and used. For example, a
partition containing only the first two characteristic predicates plus S 6= /0,T 6= /0 is possible—although it
will tend to uncover less errors than the one in Figure 3.

Hence, engineers must analyze the specification of an operation looking for mathematical operators
that they think it is likely that will have a complex implementation that would lead to errors in the
program. Then, they must propose a standard partition for them—if none has been defined or they think

M. Cristiá 15

the one defined does not suit their needs—or use an existing one. Finally, they have to partition one or
more of the current test specification by conjoining the characteristic predicates of the standard partition.
If the same mathematical operator appears more than once in the operation then they have to decide on
which expression they are going to apply the tactic. If they want to apply the tactic to another instance
of the operator or to other operators, this can be considered as the application of another tactic, so they
can repeat the process after applying the first SP.

We will apply SP to ∪ in clients∪ {u? 7→ name?} in order to partition just NewClientDNF
1 . That

is, we will not partition NewClientDNF
2 and NewClientDNF

3 by SP, because, in this case, we assess that
partitioning them in this way will not lead to a better coverage. This is so because if a test case meets
the conditions of NewClientDNF

2 or NewClientDNF
3 , it will unlikely make the program to execute the code

where ∪ is implemented. Besides, in this first application of SP we will not produce test specifications
aimed at testing the correct implementation of balances∪{n? 7→ 0} and owners∪{u? 7→ n?}. We will
not do that in this thesis to keep the example manageable, although in practice it should be done.

In summary, applying SP to ∪ in clients∪{u? 7→ name?} to partition NewClientDNF
1 yields the fol-

lowing new test specifications:

NewClientSP
1 ==

[NewClientDNF
1 |clients = /0 ∧ {u? 7→ name?}= /0]

NewClientSP
2 ==

[NewClientDNF
1 |clients = /0 ∧ {u? 7→ name?} 6= /0]

NewClientSP
3 ==

[NewClientDNF
1 |clients 6= /0 ∧ {u? 7→ name?}= /0]

NewClientSP
4 ==

[NewClientDNF
1 |

clients 6= /0
∧ {u? 7→ name?} 6= /0
∧ clients∩{u? 7→ name?}= /0]

NewClientSP
5 ==

[NewClientDNF
1 |

clients 6= /0
∧ {u? 7→ name?} 6= /0
∧ clients⊂ {u? 7→ name?}]

NewClientSP
6 ==

[NewClientDNF
1 |

clients 6= /0
∧ {u? 7→ name?} 6= /0
∧ {u? 7→ name?} ⊂ clients]

NewClientSP
7 ==

[NewClientDNF
1 |

clients 6= /0
∧ {u? 7→ name?} 6= /0
∧ clients = {u? 7→ name?}]

16 Z Specification of the Landing Gear System

NewClientVIS

NewClientDNF
1

NewClientSP
1

NewClientSP
2

NewClientSP
3

NewClientSP
4

NewClientSP
5

NewClientSP
6

NewClientSP
7

NewClientSP
8

NewClientDNF
2

NewClientDNF
3

(a) Initial

NewClientVIS

NewClientDNF
1

NewClientSP
2

NewClientSP
4

NewClientDNF
2

NewClientDNF
3

(b) After pruning

Figure 4: Initial and pruned testing trees of NewClient

NewClientSP
8 ==

[NewClientDNF
1 |

clients 6= /0
∧ {u? 7→ name?} 6= /0
∧ clients∩{u? 7→ name?} 6= /0
∧ ¬ (clients⊆ {u? 7→ name?})
∧ ¬ ({u? 7→ name?} ⊆ clients)]

Note that, again, test specifications are linked to each other by schema inclusion. Also observe that
applying SP is no more that substituting the “formal” operands appearing in the partition definition by
the “real” operands appearing in the selected expression.

As we have said, we will stop applying testing tactics in this example to keep it small. However, in
a real project some more testing tactics can and should be applied to this operation. We will show the
application of other tactics to other operations of the savings accounts system in Chapter ??.

3.3 Building a Tree of Test Specifications

According to the TTF, the test specifications of a given operation must be organized in a so called testing
tree. The testing tree has the VIS at the root, the test specifications generated after applying the first
testing tactic form the first level and so forth. The testing tree of NewClient is shown in Figure 4(a).

Testing trees are important because the TTF prescribes deriving abstract test cases only from their
leaves. This is so because each leaf conjoins the predicate of the test specifications above it up to the root,
thus making no sense to derive abstract test cases from the internal nodes. For instance, if NewClientDNF

1

M. Cristiá 17

is unfolded in NewClientSP
4 , the result is as follows:

NewClientSP
4 ==

[NewClientVIS|
u? /∈ domclients
∧ n? /∈ dombalances
∧ clients 6= /0
∧ {u? 7→ name?} 6= /0
∧ clients∩{u? 7→ name?}= /0]

Therefore, a test case that satisfies NewClientSP
4 will also satisfy NewClientDNF

1 .

These trees can be automatically obtained from the test specifications since children include a refer-
ence to their parent node by schema inclusion, as can be seen in the test specifications shown above.

3.4 Pruning Inconsistent Test Specifications

Some test specifications might be empty because their predicates are unsatisfiable. In these cases it
is impossible to find abstract test cases. Hence, inconsistent test specifications must be pruned from the
testing trees. For instance, NewClientSP

1 is inconsistent because {u? 7→ name?} cannot be empty. Another
example is NewClientSP

7 , because clients cannot be equal to {u? 7→ name?} since u? /∈ domclients also
holds. In our example, the testing tree resulting after pruning is depicted in Figure 4(b).

3.5 Deriving Abstract Test Cases from Test Specifications

Finally, the engineer has to choose at least one element satisfying each of the remaining leaves of the
testing tree. These are the abstract test cases. For example, the following horizontal schemas represent
abstract test cases of the corresponding test specifications:

NewClientTC
1 ==

[NewClientSP
2 |

balances = /0
∧ u? = uid0
∧ clients = /0
∧ n? = accnum0
∧ name? = name0
∧ owners = /0]

18 Z Specification of the Landing Gear System

NewClientTC
2 ==

[NewClientSP
4 |

balances = /0
∧ u? = uid0
∧ clients = {(uid1,name0)}
∧ n? = accnum0
∧ name? = name0
∧ owners = /0]

NewClientTC
3 ==

[NewClientDNF
2 |

balances = /0
∧ u? = uid0
∧ clients = {(uid0,name0)}
∧ n? = accnum0
∧ name? = name0
∧ owners = /0]

NewClientTC
4 ==

[NewClientDNF
3 |

balances = {(accnum0,0)}
∧ u? = uid0
∧ clients = /0
∧ n? = accnum0
∧ name? = name0
∧ owners = /0]

Note that, once more, abstract test cases are also written in Z and how they are linked to test specifi-
cations by schema inclusion.

Fastest eliminates unsatisfiable test specification and finds abstract test cases by using the {log} tool
(pronounced ‘setlog’) [31, 13]. Both activities are almos automatic for users.

3.6 Brief Discussion of the TTF

We do not pretend here to compare the TTF with other approaches because it has been done when it was
first published [37] and more recently [21]. We just want to highlight some issues that are related to the
chances of automating it or issues that deviates from the mainstream MBT methods.

3.6.1 Advantages of the TTF

We find the TTF particularly appealing for Z users since it keeps all the key elements—operations,
test specifications, abstract test cases and others—within the Z notation. Besides, it naturally provides
traceability between all these elements by using schema inclusion. Furthermore, users can define new
testing tactics that best fit their needs when the standard ones fall short.

3.6.2 The Form of Test Cases in the TTF

As can be seen, within the TTF an abstract test case is a conjunction of equalities between VIS variables
and constant values, rather than a sequence of operations leading to the desired state, as is suggested by

M. Cristiá 19

other approaches [34, 4, 14]. These sequences are useful when the SUT has to be put in a particular state
so a test case can be run from there. Since the TTF does not produce such sequences, we have proposed a
method that does two things at the same time [12]: (a) refines a TTF abstract test case into an executable
program; and (b) sets the initial state of the SUT according to the abstract test case. The only prerequisite
is the availability of the source code of the SUT. However, we think that the presentation of this method
is outside the scope of this thesis because it concentrates on the “Generation” step of Figure 2. By saying
this we want to remark that not representing test cases as sequences of operations does not necessarily
mean a weakness of the TTF, it only suggests that other approaches for the execution of test cases should
be investigated.

3.6.3 Test Oracles in the TTF

We consider necessary to explain how the TTF deals with test oracles, since this is different from other
MBT approaches. A test oracle is a means by which it is possible to determine whether a test case has
found an error in the implementation or not. Two of the advantages of the MBT methods is that oracles
are rather easy to generate and then, in turn, it allows to automatically determine the presence of an error.
The TTF is no exception in this regard, although it deals with test oracles in a rather different way.

Given that the ultimate goal of test oracles is to determine the presence of an error, they are useful
once the SUT has been executed on a test case. In other words, it is not mandatory to generate test
oracles during the “Generation” step of Figure 2, as long as they are available when the final decision
about the presence of an error has to be made. Precisely, test oracles in the TTF can be calculated when
that decision is about to be made. Following Figure 2, within the TTF an abstract test case is refined or
concretized to become a concrete test case on which the program can be exercised. When the program
is executed on such a test case, it produces some concrete output (messages on the screen, return values,
exceptions, files, etc.). However, since this output is not necessarily at the level of the specification, it
cannot be compared to it. Therefore, the output is abstracted to the level of the specification. In doing
so, each output and after-state variable is bound to a constant value as with abstract test cases. Once
this process is finished, the abstract test case and the corresponding abstract output are substituted in the
specification of the corresponding Z operation. This turns the predicate of the operation into a constant
formula, since both abstract test cases and abstract outputs are constants. Therefore, these predicates
can be symbolically evaluated. Clearly, if one of this predicates reduces to true no error was found—
because the output produced by the program corresponds to the expected output for the input that was
provided—; but if it reduces to false there is an error in the program.

Hence, in the TTF test cases do not include their oracles, as we have seen when the TTF was intro-
duced. In fact, an abstract test case only defines the values for each input and state variable. Given that
Fastest generates abstract test cases as prescribed in the TTF and that this thesis concerns only to the
“Generation” step, the results of the case studies reported in this thesis do not include test oracles.

3.6.4 State Invariants in the TTF

As we have shown in Section 2.6, we prefer writing state invariants in a separated schema and not in the
predicate part of the state schema. In this way, when the TTF is applied to an operation, state invariants
are not considered. In other words, state invariants are not analysed in the process of test case generation.
This would imply that the code implementing it will not be tested.

However, if our approach for recording state invariants is followed there should be a proof for each
operation guaranteeing that the latter satisfies the former. This means that each operation was specified in

20 Z Specification of the Landing Gear System

such a way as to verify the state invariant. Therefore, when the operation is analysed by the TTF, it will
generate test cases that will test code implementing sufficient functionality to make the program verify
the state invariant—because it implements its specification and the specification satisfies the invariant.
More formally: if operation O satisfies invariant I—i.e. I ∧ O⇒ I′—and we “prove” by testing that
program P implements O—i.e. P⇒ O—, then we can prove that P satisfies I—i.e. I ∧ P⇒ I′. In
summary, there is no need in considering state invariants during the “Generation” step as long as the
corresponding proof obligations have been discharged.

There is another reason for writing state invariants as proof obligations rather than as part of the state
schema. If state invariants are written inside the state schema they tend to produce implicit preconditions
[35, page 130] [24, Section 7.6]. That is, preconditions that are not explicitly written by the specifier
but which are implicit in the specification. Making implicit preconditions explicit requires solving an
existential quantification. Given that the first step of the TTF is to define the VIS of each operation, and
this, in turn, is defined in terms of the preconditions of the operation, then we need a simple way of
getting the preconditions of the operation. Therefore, if there are implicit preconditions it is not possible
to guarantee always to find all the preconditions of a given operation—but only its explicit ones. If state
invariants are written as proof obligations all the preconditions must be explicit and, thus, easy to find.
Hence we advocate for writing state invariants as proof obligations.

Both the TTF and Fastest work fine with either form of writing state invariants. Nevertheless, both
work better if our proposal is followed because including the state invariant in an operation makes it
much complex but this complexity does not mean better testing, as we have analysed in the previous
paragraphs.

4 The Z Specification of the Landing Gear System

4.1 Basic Types

The Z specification uses the following basic types with the meaning given below.

LSET ::= forward|left|right

HPOS ::= down|up

EVST ::= pressing|idle

SENS ::= s1|s2|s3

LIGHT ::= on|off

The front gear of the aircraft ≈ forward

The left gear of the aircraft ≈ left

The right gear of the aircraft ≈ right

The down position of the handle located in the cockpit ≈ down

The up position of the handle located in the cockpit ≈ up

An electro-valve is supplying hydraulic power ≈ pressing

An electro-valve is not supplying hydraulic power ≈ idle

M. Cristiá 21

s is a sensor identifier ≈ s ∈ SENS

A light in the cockpit is on ≈ on

A light in the cockpit is off ≈ off

The name “front” is already used in the Z mathematical toolkit so it cannot be used in type LSET . It
has been replaced by forward.

Observe that elements of SENS are regarded as identifiers; they are not the actual sensors which are
not represented in this model. In this model when a device reads from its sensors it receives three ordered
pairs of the form (sensor id,value). Hence, all the devices use the same set of sensor identifiers.

The elements of type ST have different meanings depending on to which variable are bound.

ST ::= y|n

When ST is used for:
• gears then y means locked and n means maneuvering

• door opening then y means open and n means not open

• door closing then y means closed (and locked) and n means not closed (and not locked)

• the hydraulic circuit (after the general electro-valve) then y means pressurized and n means not
pressurized

• shock absorbers then y means ground and n means flight (or relaxed)

• the analogical switch then y means closed and n means open
During the execution of the expected scenarios in normal mode (i.e. outgoing and retraction se-

quences) the controlling software passes through some internal states which are represented by type
STATE. The meaning of each state will become clear with the specification of these scenarios. States
d0, . . . ,d7 concern the outgoing sequence, and states u0, . . . ,u7 the retraction sequence.

STATE ::= init|d0|d1|d2|d3|d4|d5|d6|d7|u0|u1|u2|u3|u4|u5|u6|u7

In this model the time is discrete and starts from zero.

TIME == N

4.2 State of the Controlling Software

The state of the software is given by means of several state variables grouped in some state schemas as
described below. The grouping of state variables in different schemas allows operations schemas to use
(access) the minimum number of variables they need. This, in turn, make it simpler test case generation.

The first state schema groups the variables that set the state of the gears of the aircraft. It includes
the following variables:

The gear g is locked or not locked in extended position ≈ gExt g

The gear g is locked or not locked in retracted position ≈ gRecg

The valid sensors sensing whether gear g is locked or not locked in extended position
≈ sGExt g

The valid sensors sensing whether gear g is locked or not locked in retracted position
≈ sGRecg

22 Z Specification of the Landing Gear System

Since the type of gEtx and gRec is defined in terms of type ST and given that these variables represents
properties of the gears, then the y value of ST means locked while the n value means maneuvering. Recall
the list of interpretations for ST given in page 21.

According to this, if, for instance, at time t the sensors sensing whether the front gear is locked or
not locked in extended position deliver the following values:

s1 7→ y,s2 7→ n,s3 7→ y

then at time t the value of sGExt front will be {s1,s3}. The same applies to sGRec and in general to all
the variables that represent the set of valid sensors of the various devices of the LGS.

GearsExtending
gExt : LSET→ ST
sGExt : LSET→ FSENS

GearsRetracting
gRec : LSET→ ST
sGRec : LSET→ FSENS

Gears == GearsExtending ∧ GearsRetracting

gExt could be defined also as of type FLSET , which would be closer to the Z style. In this way,
g ∈ gExt if and only if gear g is locked in extended position. However, in this particular model it seems
easier (and clearer) to define gExt as a function. The same applies to gRec.

State schema Doors plays the same role for doors than Gears for gears with a similar set of state
variables. Therefore, only its designations are given below. Recall the list of interpretations for ST given
in page 21.

DoorsOpening
dOp : LSET→ ST
sDOp : LSET→ FSENS

DoorsClosing
dCl : LSET→ ST
sDCl : LSET→ FSENS

Doors == DoorsOpening ∧ DoorsClosing

The door d is in open or not open position ≈ dOpd

The door d is locked or not locked in closed position ≈ dCld

The valid sensors sensing whether door d is in open or not open position ≈ sDOpd

The valid sensors sensing whether door d is locked or not locked in closed position ≈
sDCld

M. Cristiá 23

The following schema groups the variables for the shock absorbers. They are quite similar to those
of the preceding schemas. So, only its designations are given. Recall the list of interpretations for ST
given in page 21.

ShockAbsorbers
sa : LSET→ ST
sSA : LSET→ FSENS

The shock absorber s is in ground or in flight position ≈ sas

The valid sensors sensing whether shock absorber s is in ground or in flight position
≈ sSAs

Given that there is only one hydraulic circuit dedicated to the LGS it is not necessary to define a
function to record its state; one simple variable is enough. Then, hc stores the state of the hydraulic
circuit. Recall the list of interpretations for ST given in page 21.

HydraulicCircuit
hc : ST
sHC : FSENS

The hydraulic circuit is pressurized or not pressurized ≈ hc

The valid sensors sensing whether the hydraulic circuit is pressurized or not pressurized
≈ sHC

The following schema look like HydraulicCircuit so only its designations are given.

AnalogicalSwitch
as : ST
sAS : FSENS

The analogical switch is open or closed ≈ as

The valid sensors sensing whether the analogical switch is open or closed ≈ sAS

Handle groups the state variables regarding the handle in the cockpit. It includes the position of the
handle (hPos) and two time marks necessary for the timing constraints.

Handle
hPos : HPOS
lHPCh, l20 : TIME

24 Z Specification of the Landing Gear System

The handle is up or down ≈ hPos

Last time the handle position changed ≈ lHPCh

Last time that the handle position has not changed for 20 seconds ≈ l20

Now follows some schemas grouping state variables of the different electro-valves. Each schema
includes a variable to record the state of the corresponding electro-valve as well as one variable to store
the last time the electro-valve was stimulated; only the general electro-valve has an extra variable to store
the last time an electro-valve was stopped.

GeneralEV
stGEV,spGEV : TIME
gEV : EVST

The general electro-valve is pressing (i.e. is providing hydraulic power) or is idle (i.e. is
not providing hydraulic power) ≈ gEV

Stimulation of the general electro-valve was started at time ≈ stEV

Stimulation of the general electro-valve was stopped at time ≈ spEV

DoorOpeningEV
doEV : EVST
stDOEV : TIME

The electro-valve related to door opening is pressing or is idle ≈ doEV

Stimulation of the electro-valve related to door opening was started at time ≈ stDOEV

DoorClosingEV
dcEV : EVST
stDCEV : TIME

The electro-valve related to door closing is pressing or is idle ≈ dcEV

Stimulation of the electro-valve related to door closing was started at time ≈ stDCEV

GearsExtendingEV
geEV : EVST
stGEEV : TIME

M. Cristiá 25

The electro-valve related to gear extension is pressing or is idle ≈ geEV

Stimulation of the electro-valve related to gear extension was started at time ≈ stGEEV

GearsRetractingEV
grEV : EVST
stGREV : TIME

The electro-valve related to gear retraction is pressing or is idle ≈ grEV

Stimulation of the electro-valve related to gear retraction was started at time ≈ stGREV

There are two more variables to record time marks.

EVst
stEV : TIME

EVsp
spEV : TIME

Stimulation of an electro-valve was started at time ≈ stEV

Stimulation of an electro-valve was stopped at time ≈ spEV

Every time the general electro-valve is stimulated two variables will be updated:

• gEV will be set to pressing; and

• stGEV will be set to the current time

Every time the general electro-valve is stopped two variables will be updated:

• gEV will be set to idle; and

• spGEV will be set to the current time

Every time an electro valve is stimulated three variables will be updated. For example, if the door
opening electro-valve is stimulated:

• doEV will be set to pressing;

• stDOEV will be set to the current time; and

• stEV (from schema EVst) will be set to the current time

Every time an electro valve is stopped two variables will be updated. For example, if the door opening
electro-valve is stimulated:

• doEV will be set to idle;

• spEV (from schema EVsp) will be set to the current time

26 Z Specification of the Landing Gear System

In this way, it is possible to know:

• The elapsed time between two consecutive stimulations of any two electro-valves, through variable
stEV .

• The elapsed time between two consecutive orders to stop the stimulation of any two electro-valves,
through variable spEV .

• The elapsed time between two consecutive contrary orders of any two electro-valves, through
variables stEV , stDOEV , stDCEV , stGEEV and stGREV .

• The last time the general electro-valve was stimulated or stopped, through variables stGEV and
spGEV .

The state of the cockpit is represented by three simple variables each of them corresponding to the
three lights that inform the pilot about the state of the LGS. The “landing gear system failure” light (lgsfl)
is used as a synonym for “LGS mode of operation”. That is when lgsfl = on the LGS has failed and the
pilot can activate the emergency hydraulic circuit; when lgsfl = off the LGS is operating normally.

CockpitA
lgsfl : LIGHT

CockpitN
gldl,gml : LIGHT

Cockpit == CockpitA ∧ CockpitN

The “landing gear system failure” light ≈ lgsfl

The “gears are locked down” light ≈ gldl

The “gears maneuvering” light ≈ gml

When the two main scenarios in normal mode (i.e. the outgoing and retraction sequences) are exe-
cuted the software goes through a series of internal states. The following variable records that state.

StateCounter
st : STATE

The software internal state during either the outgoing or retraction sequence ≈ st

Since there are several timing restrictions that the software must met, the model keeps track of time
advance by means of variable now. This variable is incremented by 1 ms.

Time
now : TIME

M. Cristiá 27

The current time ≈ now

4.3 Initial states

The initial state of the system represents a “healthy” aircraft on ground. That is, its gears are locked
down (which in turn means that they are not retracted), the doors are closed, all the sensors are operating
correctly, etc. This state is set by setting the variables in each and every one of the state schemas defined
above.

GearsInit
Gears

rangExt = {y}
rangRec = {n}
ransGExt = ransGRec = {SENS}

If the aircraft is on ground the doors of the LGS are closed.

DoorsInit
Doors

randOp = {n}
randCl = {y}
ransDOp = ransDCl = {SENS}

Obviously the shock absorbers are on ground.

ShockAbsorbersInit
ShockAbsorbers

ransa = {y}
ransSA = {SENS}

The hydraulic circuit is not pressurized.

HydraulicCircuitInit
HydraulicCircuit

hc = n
sHC = SENS

The analogical switch is open.

AnalogicalSwitchInit
AnalogicalSwitch

as = n
sAS = SENS

28 Z Specification of the Landing Gear System

The handle is down so it is consistent with the state of the gears.

HandleInit
Handle

hPos = down
lHPCh = l20 = 0

All the electro-valves are not providing hydraulic power.

GeneralEVInit
EVst
EVsp
GeneralEV

gEV = idle
stEV = spEV = stGEV = spGEV = 0

DoorOpeningEVInit
DoorOpeningEV

doEV = idle
stDOEV = 0

DoorClosingEVInit
DoorClosingEV

dcEV = idle
stDCEV = 0

GearsExtendingEVInit
GearsExtendingEV

geEV = idle
stGEEV = 0

GearsRetractingEVInit
GearsRetractingEV

grEV = idle
stGREV = 0

The lights in the cockpit reflects the state of the gears and the healthy of the system.

M. Cristiá 29

CockpitInit
Cockpit

lgsfl = off
gldl = on
gml = off

The internal state counter is in its initial state.

StateCounterInit
StateCounter

st = init

The LGS time starts at zero.

TimeInit
Time

now = 0

4.4 Assumptions and Limitations of the Z Specification

The Z specification presented here (and the complete model described in [10]) is based on the following
assumptions and limitations:

• Each Z operation is atomic and takes no time to be executed.

• If at a given point in time there is more than one operation enabled (i.e. their preconditions are
true), the system nondeterministically executes one of them.

• Only one operation is executed at any given time.

• All operations are executed according to a weak fairness formula [25]. Z should be extended as
Evans suggests to be able to write these formulas [16].

• The software stops working when the red light in the cockpit is turned on (lgsfl = on). Then,
operations do not include the precondition lgsfl = off because when this is no longer true the
software is not working.

• The system measures the time in milliseconds; the time is considered to be discrete.

• The specification considers just one computing module [6, Sect. 2.3]. That is all the outputs
produced by the software are produced by only one computing module.

• The sentence:

two contrary orders (closure / opening doors, extension / retraction gears) must be sep-
arated by at least 100ms.

is interpreted as follows:

the start of stimulation of the electro-valves corresponding to devices that execute con-
trary orders must be separated by at least 100ms.

30 Z Specification of the Landing Gear System

4.5 Operations Concerning Sensor Readings and its Anomalies

In this section the operations describing how the values read by sensors are stored in the system are
formalized. These operations include the specification of the conditions under which an anomaly con-
cerning the validity of sensors is detected.

Given that every device (gears, doors, shock absorbers, etc.) reads (simultaneously) from three
sensors, the following operations take an input variable v? of type SENS→ ST . Its interpretation is
simple: if s : SENS then v?s is the value delivered by sensor s at that moment. In this sense, v? can be
seen as the result of an election where each sensor votes for one of two possible candidates.

There are two key operations regarding v? when a device of the LGS reads its sensors. The first one is
to find the set of valid sensors. This set is formed by the majority who won the election. The y value won
the election if #(vB {y}) > #(vB {n}), otherwise the winer is n. Note that if #v? = 2 and each sensor
reads a different value, n wins but this is irrelevant as is going to be shown below. The next function,
valid, calculates the set of valid sensors by taking the domain of vB {y} or vB {n} depending on who
won the election.

valid : (SENS 7→ ST)→ FSENS

∀v : SENS 7→ ST •
valid v =

if #(vB{y})> #(vB{n})
then dom(vB{y})
else dom(vB{n})

Note that, although v? is a total function, valid waits a partial function. This is so because when a
sensor is invalidated the following readings consider only the two remaining sensors. Therefore, valid is
called with v? restricted to the two active sensors and this is a partial function.

The second operation regarding v? is to determine the net value read by the three sensors. According
to [6], the net value is the value read by the majority. value, returns the net value in a similar way as
valid returns the set of valid sensors.

value : (SENS 7→ ST)→ ST

∀v : SENS 7→ ST •
valuev =

if #(vB{y})> #(vB{n}) then y else n

Each of the following Z operations describe how a device of the LGS reads from its sensors and what
the software does with these values. All these operations share a common structure:
• A first schema, whose name ends in N, describing the case when the three sensors return the same

value. N here suggests normal functioning.

• A second schema, whose name ends in Ds, describing the case when a sensor returns a different
value for the first time (and so it is discharged for ever). Ds here suggests degrades.

• A third schema, whose name ends in Dd, describing the case when two sensors are working cor-
rectly. Dd here suggests degraded.

• A fourth schema, whose name ends in A, describing the case when the two remaining sensors
differ in their readings for the first time (and so a system anomaly is detected). A here suggests
anomaly.

M. Cristiá 31

• A fifth schema as the disjunction of the four previous schemas that describes the full operation.

Since all the operations share a common structure and the predicates in them are very similar to each
other, only the first operation is explained in detail.

4.5.1 Gears in Extended Position

The next five schemas describe the system reading the sensors that determine whether the gears are
locked or not locked in extended position. Each schema receives the gear or landing set to which the
reading applies, g?, and v? (as mentioned above). ReadGearsExtendingN has only one preconditions:
all the three sensors are valid with respect to reading v?. In other words this device is working in normal
mode. Then, the state of the corresponding gear (g?) is updated according to the net value (value(v?))
read by the sensors. The set of valid sensors of these devices (sGExt) remain unchanged (recall that the
initial value for all the variables representing valid sets of sensors is SENS, see Sect. 4.3).

ReadGearsExtendingN
∆GearsExtending; ΞCockpitA
g? : LSET
v? : SENS→ ST

valid(v?) = SENS
gExt′ = gExt⊕{g? 7→ value(v?)}
sGExt′ = sGExt

In ReadGearsExtendingDs the device for g starts to work in degraded mode because one of the
sensors reads a different value with respect to the other two (valid(v?)⊂ SENS), when previously all of
them were working properly (sGExt g? = SENS). Therefore, the state of the corresponding gear (g?) is
updated according to the net value (value(v?)) read by the sensors and the set of valid sensors for g is
also updated.

ReadGearsExtendingDs
∆GearsExtending; ΞCockpitA
g? : LSET
v? : SENS→ ST

sGExt g? = SENS
valid(v?)⊂ SENS
gExt′ = gExt⊕{g? 7→ value(v?)}
sGExt′ = sGExt⊕{g? 7→ valid(v?)}

Now that there are just two valid sensors the net value must be calculated from them. So ReadGearsExtendingDd
is applied if the set of valid sensors is strictly included in SENS and it is exactly the same set recorded
by the system: valid(sGExt g?C v?) = sGExt g?. In other words, since one of the sensors is no longer
considered (although it keeps sending its readings to the system), the set of valid sensors is calculated
from the set of sensors that are currently considered valid: sGExt g?. So valid is called with v? restricted
to the set of valid sensors (sGExt g?C v?) to see if this is still the same set. The same applies to the way
the net value is calculated: value(sGExt g?C v?).

32 Z Specification of the Landing Gear System

ReadGearsExtendingDd
∆GearsExtending; ΞCockpitA
g? : LSET
v? : SENS→ ST

sGExt g?⊂ SENS
valid(sGExt g?C v?) = sGExt g?
gExt′ = gExt⊕{g? 7→ value(sGExt g?C v?)}
sGExt′ = sGExt

If one of the two working sensors fails (valid(sGExt g?C v?) 6= sGExt g?) then the system moves to
a failed state by turning on the read light in the cockpit: lgsfl′ = on. Remember that it was assumed that
from this moment the software is not working anymore. By the way, note that in this case valid will
arbitrarily return the set {si} where v?si = n. However, this is irrelevant because this set will be different
from sGExt g? since it has two elements.

ReadGearsExtendingA
ΞGearsExtending; ∆CockpitA
g? : LSET
v? : SENS→ ST

sGExt g?⊂ SENS
valid(sGExt g?C v?) 6= sGExt g?
lgsfl′ = on

ReadGearsExtending is simply the disjunction of the preceding four schemas, thus defining the full
operation of reading the sensors informing about the lock of gears in extended position.

ReadGearsExtending ==
ReadGearsExtendingN
∨ ReadGearsExtendingDs ∨ ReadGearsExtendingDd ∨ ReadGearsExtendingA

As has been said above, the next schemas share the same structure and have similar predicates so no
more informal explanations will be given.

4.5.2 Gears in Retracted Position

The system reads the sensors indicating whether the gears are locked or not locked in
retracted position ≈ ReadGearsRetracting

ReadGearsRetractingN
∆GearsRetracting; ΞCockpitA
g? : LSET
v? : SENS→ ST

valid(v?) = SENS
gRec′ = gRec⊕{g? 7→ value(v?)}
sGRec′ = sGRec

M. Cristiá 33

ReadGearsRetractingDs
∆GearsRetracting; ΞCockpitA
g? : LSET
v? : SENS→ ST

sGRecg? = SENS
valid(v?)⊂ SENS
gRec′ = gRec⊕{g? 7→ value(v?)}
sGRec′ = sGRec⊕{g? 7→ valid(v?)}

ReadGearsRetractingDd
∆GearsRetracting; ΞCockpitA
g? : LSET
v? : SENS→ ST

sGRecg?⊂ SENS
valid(sGRecg?C v?) = sGRecg?
gRec′ = gRec⊕{g? 7→ value(sGRecg?C v?)}
sGRec′ = sGRec

ReadGearsRetractingA
ΞGearsRetracting; ∆CockpitA
g? : LSET
v? : SENS→ ST

sGRecg?⊂ SENS
valid(sGRecg?C v?) 6= sGRecg?
lgsfl′ = on

ReadGearsRetracting ==
ReadGearsRetractingN
∨ ReadGearsRetractingDs ∨ ReadGearsRetractingDd ∨ ReadGearsRetractingA

4.5.3 Shock Absorbers

The system reads the sensors indicating whether the shock absorbers are on ground or in
flight ≈ ReadShockAbsorbers

ReadShockAbsorbersN
∆ShockAbsorbers; ΞCockpitA
g? : LSET
v? : SENS→ ST

valid(v?) = SENS
sa′ = sa⊕{g? 7→ value(v?)}
sSA′ = sSA

34 Z Specification of the Landing Gear System

ReadShockAbsorbersDs
∆ShockAbsorbers; ΞCockpitA
g? : LSET
v? : SENS→ ST

sSAg? = SENS
valid(v?)⊂ SENS
sa′ = sa⊕{g? 7→ value(v?)}
sSA′ = sSA⊕{g? 7→ valid(v?)}

ReadShockAbsorbersDd
∆ShockAbsorbers; ΞCockpitA
g? : LSET
v? : SENS→ ST

sSAg?⊂ SENS
valid(sSAg?C v?) = sSAg?
sa′ = sa⊕{g? 7→ value(sSAg?C v?)}
sSA′ = sSA

ReadShockAbsorbersA
ΞShockAbsorbers; ∆CockpitA
g? : LSET
v? : SENS→ ST

sSAg?⊂ SENS
valid(sSAg?C v?) 6= sSAg?
lgsfl′ = on

ReadShockAbsorbers ==
ReadShockAbsorbersN
∨ ReadShockAbsorbersDs ∨ ReadShockAbsorbersDd ∨ ReadShockAbsorbersA

4.5.4 Doors Open

The system reads the sensors indicating whether the doors are in open or not open position
≈ ReadDoorsOpening

ReadDoorsOpeningN
∆DoorsOpening; ΞCockpitA
g? : LSET
v? : SENS→ ST

valid(v?) = SENS
dOp′ = dOp⊕{g? 7→ value(v?)}
sDOp′ = sDOp

M. Cristiá 35

ReadDoorsOpeningDs
∆DoorsOpening; ΞCockpitA
g? : LSET
v? : SENS→ ST

sDOpg? = SENS
valid(v?)⊂ SENS
dOp′ = dOp⊕{g? 7→ value(v?)}
sDOp′ = sDOp⊕{g? 7→ valid(v?)}

ReadDoorsOpeningDd
∆DoorsOpening; ΞCockpitA
g? : LSET
v? : SENS→ ST

sDOpg?⊂ SENS
valid(sDOpg?C v?) = sDOpg?
dOp′ = dOp⊕{g? 7→ value(sDOpg?C v?)}
sDOp′ = sDOp

ReadDoorsOpeningA
ΞDoorsOpening; ∆CockpitA
g? : LSET
v? : SENS→ ST

sDOpg?⊂ SENS
valid(sDOpg?C v?) 6= sDOpg?
lgsfl′ = on

ReadDoorsOpening ==
ReadDoorsOpeningN
∨ ReadDoorsOpeningDs ∨ ReadDoorsOpeningDd ∨ ReadDoorsOpeningA

4.5.5 Doors Closed

The system reads the sensors indicating whether the doors are locked or not locked in
closed position ≈ ReadDoorsClosing

ReadDoorsClosingN
∆DoorsClosing; ΞCockpitA
g? : LSET
v? : SENS→ ST

valid(v?) = SENS
dCl′ = dCl⊕{g? 7→ value(v?)}
sDCl′ = sDCl

36 Z Specification of the Landing Gear System

ReadDoorsClosingDs
∆DoorsClosing; ΞCockpitA
g? : LSET
v? : SENS→ ST

sDClg? = SENS
valid(v?)⊂ SENS
dCl′ = dCl⊕{g? 7→ value(v?)}
sDCl′ = sDCl⊕{g? 7→ valid(v?)}

ReadDoorsClosingDd
∆DoorsClosing; ΞCockpitA
g? : LSET
v? : SENS→ ST

sDClg?⊂ SENS
valid(sDClg?C v?) = sDClg?
dCl′ = dCl⊕{g? 7→ value(sDClg?C v?)}
sDCl′ = sDCl

ReadDoorsClosingA
ΞDoorsClosing; ∆CockpitA
g? : LSET
v? : SENS→ ST

sDClg?⊂ SENS
valid(sDClg?C v?) 6= sDClg?
lgsfl′ = on

ReadDoorsClosing ==
ReadDoorsClosingN
∨ ReadDoorsClosingDs ∨ ReadDoorsClosingDd ∨ ReadDoorsClosingA

4.5.6 Hydraulic Circuit

The remaining two operations describe the reading of single devices (hydraulic circuit and analogical
switch). Then, the parameter g? used in the previous schemas is no longer needed. Furthermore, the
predicates in these operations are simpler because the variables recording the state of the device and the
set of valid sensors are plain variables (i.e. they are not functions as in the previous operations).

The system reads the sensors indicating whether the hydraulic circuit is pressurized or
not pressurized ≈ ReadHydraulicCircuit

M. Cristiá 37

ReadHydraulicCircuitN
∆HydraulicCircuit; ΞCockpitA
v? : SENS→ ST

valid(v?) = SENS
hc′ = value(v?)
sHC′ = sHC

ReadHydraulicCircuitDs
∆HydraulicCircuit; ΞCockpitA
v? : SENS→ ST

sHC = SENS
valid(v?)⊂ SENS
hc′ = value(v?)
sHC′ = valid(v?)

ReadHydraulicCircuitDd
∆HydraulicCircuit; ΞCockpitA
v? : SENS→ ST

sHC ⊂ SENS
valid(sHCC v?) = sHC
hc′ = value(sHCC v?)

ReadHydraulicCircuitA
ΞHydraulicCircuit; ∆CockpitA
v? : SENS→ ST

sHC ⊂ SENS
valid(sHCC v?) 6= sHC
lgsfl′ = on

ReadHydraulicCircuit ==
ReadHydraulicCircuitN
∨ ReadHydraulicCircuitDs ∨ ReadHydraulicCircuitDd ∨ ReadHydraulicCircuitA

4.5.7 Analogical Switch

The system reads the sensors indicating whether the analogical switch (between the dig-
ital part and the general electro-valve) is closed or open ≈ ReadAnalogicalSwitch

38 Z Specification of the Landing Gear System

ReadAnalogicalSwitchN
∆AnalogicalSwitch; ΞCockpitA
v? : SENS→ ST

valid(v?) = SENS
as′ = value(v?)
sAS′ = sAS

ReadAnalogicalSwitchDs
∆AnalogicalSwitch; ΞCockpitA
v? : SENS→ ST

sAS = SENS
valid(v?)⊂ SENS
as′ = value(v?)
sAS′ = valid(v?)

ReadAnalogicalSwitchDd
∆AnalogicalSwitch; ΞCockpitA
v? : SENS→ ST

sAS⊂ SENS
valid(sASC v?) = sAS
as′ = value(sASC v?)
sAS′ = sAS

ReadAnalogicalSwitchA
ΞAnalogicalSwitch; ∆CockpitA
v? : SENS→ ST

sAS⊂ SENS
valid(sASC v?) 6= sAS
lgsfl′ = on

ReadAnalogicalSwitch ==
ReadAnalogicalSwitchN
∨ ReadAnalogicalSwitchDs ∨ ReadAnalogicalSwitchDd ∨ ReadAnalogicalSwitchA

4.6 Operations Concerning Normal Mode

This section includes the Z operations that describe the interaction with the cockpit, the two main sce-
narios in normal mode (i.e. the outgoing and retracting sequences) and the counter orders that may be
given during the execution of these scenarios.

M. Cristiá 39

The first operation represents the pilot moving the handle up or down. Each of these operations
enables the corresponding main scenario.

Each of the two main scenarios is organized in eight schemas, each representing one of the steps
or elementary actions described in [6, pages 14 and 15]. The third step of the retraction sequence is
decomposed in two schemas.

The counter orders are decomposed in seven schemas each, because it has been considered that if
the counter order arrives before the first step of the main scenario has been executed there is nothing to
revert.

4.6.1 Interaction with the cockpit

In the initial state of the LGS the internal state counter, st, is equal to init; the handle, hPos, is in the
down position; and the gears are locked in extended position (see Sect. 4.3). Then, the only thing the
pilot can do is to move the handle to the up position. In this moment st is set to the first internal state, u0,
of the retracting sequence. This new value for st enables the first step, Up1, of the retracting sequence.
Besides, a time mark is taken when the pilot moves the handle to record the time of its last change:
lHPCh′ = now. All this is specified in ChangeHandleDownUp.

ChangeHandleDownUp
∆Handle; ∆StateCounter; ΞTime

hPos = down
hPos′ = up
lHPCh′ = now
st′ = u0
l20′ = l20

The symmetric operation is specified in ChangeHandleUpDown.

ChangeHandleUpDown
∆Handle; ∆StateCounter; ΞTime

hPos = up
hPos′ = down
lHPCh′ = now
st′ = d0
l20′ = l20

The complete specification is as follows:

ChangeHandle == ChangeHandleDownUp ∨ ChangeHandleUpDown

Since anomalies are calculated in sections 4.5 and 4.8, this section includes only the interaction
with the cockpit in normal mode. These interactions include turning on and off the lights indicating the
position of gears. The first operation describes the conditions to turn on and off the green light which,
when on, indicates that all the gears are locked down. The three gears are locked in extended position
when y is the only element of the range of gExt. In other words, when gExt is applied to any element of
LSET the result is y, which means that each and every gear is locked in the extended position.

40 Z Specification of the Landing Gear System

GearsLockedDownOn
∆CockpitN; ΞGearsExtending

rangExt = {y}
gldl′ = on

GearsLockedDownOff
∆CockpitN; ΞGearsExtending

rangExt 6= {y}
gldl′ = off

GearsLockedDown == GearsLockedDownOn ∨ GearsLockedDownOff

The second operation describes the conditions to turn on and off the orange light which, when on,
indicates that gears are maneuvering. Note that “gears are not maneuvering” is formalized as:

(rangExt = {y} ∨ rangRec = {y}) ∧ randCl = {y}

so the negation of this predicate means “gears are maneuvering”:

¬ ((rangExt = {y} ∨ rangRec = {y}) ∧ randCl = {y})
≡ (rangExt 6= {y} ∧ rangRec 6= {y}) ∨ randCl 6= {y}

Therefore the operation is defined as follows:

GearsManeuveringOn
∆CockpitN; ΞGears; ΞDoorsClosing

(rangExt 6= {y} ∧ rangRec 6= {y}) ∨ randCl 6= {y}
gml′ = on

GearsManeuveringOff
∆CockpitN; ΞGears; ΞDoorsClosing

(rangExt = {y} ∨ rangRec = {y}) ∧ randCl = {y}
gml′ = off

GearsManeuvering == GearsManeuveringOn ∨ GearsManeuveringOff

4.6.2 Retraction sequence

When the handle is moved to the up position the internal state of the software, st, is set to u0 which
enables the first step of the retraction sequence formalized as follows:

M. Cristiá 41

Up1Ok
∆GeneralEV; ∆EVst; ∆StateCounter
ΞTime; ΞHandle

st = u0
hPos = up
200≤ now− stEV ∨ stEV = 0
gEV ′ = pressing
stGEV ′ = now
stEV ′ = now
st′ = u1
spGEV ′ = spGEV

As can be seen, Up1 has three preconditions:

• The internal state is u0;

• The handle is in the up position; and

• The last time an electro-valve was stimulated was more than 200 ms before the current time or it
is the first time an electro-valve is stimulated.

In turn its postconditions are simply:

• The general electro-valve is stimulated;

• The current time is saved in a state variable because later will be necessary to see if timing con-
straints regarding electro-valve stimulation are met; and

• The internal state is set to u1.

A full specification of Up1 must say what the software should do if st = u0 ∧ hPos = up ∧ (200 ≤
now− stEV ∨ stEV = 0) is not true. Although this seems odd, the software may fail and try to call
the routine implementing Up1 when the system is in an unexpected state. In this case the system must
remain in the same state. Then, the following schema is defined:

Up1E
ΞGeneralEV; ΞEVst; ΞStateCounter; ΞTime; ΞHandle

¬ (st = u0 ∧ hPos = up ∧ (200≤ now− stEV ∨ stEV = 0))

Hence, the full operation is:

Up1 == Up1Ok ∨ Up1E

In Up2 the door opening electro-valve is stimulated, then it is necessary to check whether enough
time (100 ms) has elapsed since the last stimulation of the opposite electro-valve (door closing) unless
the latter was never stimulated.

42 Z Specification of the Landing Gear System

Up2Ok
∆DoorOpeningEV; ∆EVst; ∆StateCounter
ΞDoorClosingEV; ΞTime; ΞHandle

st = u1
hPos = up
200≤ now− stEV
100≤ now− stDCEV ∨ stDCEV = 0
doEV ′ = pressing
stDOEV ′ = now
stEV ′ = now
st′ = u2

Besides, after Up1 has finished it is possible to receive a contrary order before any of the remaining
step starts. Therefore, if a contrary order arrives between the moment that Up1 has just finished and right
before Up2 starts, then the latter will stop the retraction sequence and will set the state of the system in
such a way as to start the outgoing sequence at the right point. This is formalized as follows:

UpDown2
∆StateCounter
ΞDoorOpeningEV; ΞEVst; ΞDoorClosingEV; ΞTime; ΞHandle

st = u1
hPos = down
st′ = d1

As can be seen UpDown2 has two preconditions:
• The handle is down; and

• st is in u1
In this way, every time Up1 “finishes”, Up2Ok and UpDown2 can be enabled. However, in a given

execution there will be just one of them enabled depending on whether the pilot has moved the handle or
not in the meanwhile. In effect, if the pilot does not move the handle to the down position right after Up1,
Up2Ok will be enabled, but if he or she moves the handle, then UpDown2 will be enabled. Note that
when the handle is moved none of the Down schemas (see Sect. 4.6.3) become automatically enabled
because they have as a precondition st = di with di ∈ {d0, . . . ,d7}, and at this moment st is equal to u1
since the retracting sequence is being executed.

In summary, the following sequences of schema activations can take place when the handle is moved
(this is just an informal presentation):
• Up1Ok→ UpOk2

• Up1Ok→ ChangeHandleUpDown→ UpDown2→ Down2
The following schemas complete the specification of this step of the retraction sequence. Note that

Up2E, unlike Up1E, does not include the negation of hPos = up because this is considered in UpDown2.

Up2E
ΞDoorOpeningEV; ΞEVst; ΞStateCounter; ΞDoorClosingEV; ΞTime; ΞHandle

¬ (st = u1 ∧ 200≤ now− stEV ∧ (100≤ now− stDCEV ∨ stDCEV = 0))

M. Cristiá 43

Up2 == Up2Ok ∨ UpDown2 ∨ Up2E

The remaining schemas (Up3, . . . ,Up8 as well as those of the outgoing sequence) are rather similar
to Up2. Hence, only minimal explanations are given.

Up31 deals with the part of step 3 when the shock absorbers are in flight (relaxed). In this case the
gear retraction electro-valve is stimulated. This schema adds two preconditions:

• All the doors are already opened (randOp = {y}); and

• All the shock absorbers are in flight (ransa = {n}).

Up31
∆GearsRetractingEV; ∆EVst; ∆StateCounter
ΞGearsExtendingEV; ΞDoorsOpening; ΞShockAbsorbers; ΞTime; ΞHandle

st = u2
hPos = up
randOp = {y}
ransa = {n}
200≤ now− stEV
100≤ now− stGEEV ∨ stGEEV = 0
grEV ′ = pressing
stGREV ′ = now
stEV ′ = now
st′ = u3

U32 deals with the opposite case: one or more shock absorbers are not seen as in flight (ransa 6= {n}).
In this case nothing is done except advancing the internal state to u4.

Up32
∆StateCounter
ΞDoorsOpening; ΞShockAbsorbers; ΞHandle

st = u2
hPos = up
randOp = {y}
ransa 6= {n}
st′ = u4

The schema for reverting the order at this point is:

UpDown3
∆StateCounter
ΞDoorsOpening; ΞShockAbsorbers; ΞHandle

st = u2
hPos = down
st′ = d2

44 Z Specification of the Landing Gear System

Up3E
ΞGearsRetractingEV; ΞEVst; ΞStateCounter; ΞGearsExtendingEV
ΞDoorsOpening; ΞShockAbsorbers; ΞTime; ΞHandle

¬ (st = u2
∧ randOp = {y} ∧ 200≤ now− stEV ∧ (100≤ now− stGEEV ∨ stGEEV = 0))

Up3 == Up31 ∨ Up32 ∨ UpDown3 ∨ Up3E

Since stopping the stimulation of electro-valves is subjected to timing restrictions (1 s between any
two of them), the following schema takes the time marks concerning stopping the stimulation. The fourth
step of the retracting sequences requires that all gears are locked up: rangRec = {y}.

Up4Ok
∆GearsRetractingEV; ∆EVsp; ∆StateCounter
ΞGearsRetracting; ΞTime; ΞHandle

st = u3
hPos = up
rangRec = {y}
1000≤ now− spEV ∨ spEV = 0
grEV ′ = idle
spEV ′ = now
st′ = u4
stGREV ′ = stGREV

The schema for reverting the order at this point is:

UpDown4
∆GearsRetractingEV; ∆EVsp; ∆StateCounter
ΞGearsRetracting; ΞTime; ΞHandle

st = u3
hPos = down
grEV ′ = idle
spEV ′ = now
st′ = d2
stGREV ′ = stGREV

Up4E
ΞGearsRetractingEV; ΞEVsp; ΞStateCounter; ΞGearsRetracting; ΞTime; ΞHandle

¬ (st = u3 ∧ rangRec = {y} ∧ (1000≤ now− spEV ∨ spEV = 0))

Up4 == Up4Ok ∨ UpDown4 ∨ Up4E

M. Cristiá 45

In Up5 is:

1000≤ now− spEV

and not:

1000≤ now− spEV ∨ spEV = 0

because to get to this schema the system has passed through schema Up4 where the gear retraction
electro-valves were stopped, so spEV cannot be zero.

Up5Ok
∆DoorOpeningEV; ∆EVsp; ∆StateCounter
ΞTime; ΞHandle

st = u4
hPos = up
1000≤ now− spEV
doEV ′ = idle
spEV ′ = now
st′ = u5
stDOEV ′ = stDOEV

The schema for reverting the order at this point is:

UpDown5
∆StateCounter
ΞDoorOpeningEV; ΞEVsp; ΞTime; ΞHandle

st = u4
hPos = down
st′ = d2

Up5E
ΞDoorOpeningEV; ΞEVsp; ΞStateCounter; ΞTime; ΞHandle

¬ (st = u4 ∧ 1000≤ now− spEV)

Up5 == Up5Ok ∨ UpDown5 ∨ Up5E

In Up6 is:

100≤ now− stDOEV

and not:

100≤ now− stDOEV ∨ stDOEV = 0

46 Z Specification of the Landing Gear System

because to get to this schema the system has passed through schema Up2 where the doors were opened,
so stDOEV cannot be zero.

Up6Ok
∆DoorClosingEV; ∆EVst; ∆StateCounter
ΞDoorOpeningEV; ΞTime; ΞHandle

st = u5
hPos = up
200≤ now− stEV
100≤ now− stDOEV
dcEV ′ = pressing
stDCEV ′ = now
stEV ′ = now
st′ = u6

The schema for reverting the order is:

UpDown6
∆StateCounter
ΞDoorClosingEV; ΞEVst; ΞDoorOpeningEV; ΞTime; ΞHandle

st = u5
hPos = down
st′ = d1

Up6E
ΞDoorClosingEV; ΞEVst; ΞStateCounter; ΞDoorOpeningEV; ΞTime; ΞHandle

¬ (st = u5 ∧ 200≤ now− stEV ∧ 100≤ now− stDOEV)

Up6 == Up6Ok ∨ UpDown6 ∨ Up6E

Up7Ok
∆DoorClosingEV; ∆EVsp; ∆StateCounter
ΞDoorsClosing; ΞTime; ΞHandle

st = u6
hPos = up
randCl = {y}
1000≤ now− spEV
dcEV ′ = idle
spEV ′ = now
st′ = u7
stDCEV ′ = stDCEV

M. Cristiá 47

The schema for reverting the order at this point is:

UpDown7
∆StateCounter; ∆EVsp; ∆DoorClosingEV
ΞDoorsClosing; ΞTime; ΞHandle

st = u6
hPos = down
dcEV ′ = idle
spEV ′ = now
st′ = d1
stDCEV ′ = stDCEV

Up7E
ΞDoorClosingEV; ΞEVsp; ΞStateCounter; ΞDoorsClosing; ΞTime; ΞHandle

¬ (st = u6 ∧ randCl = {y} ∧ 1000≤ now− spEV)

Up7 == Up7Ok ∨ UpDown7 ∨ Up7E

The last step in the sequence restores sp to init.

Up8Ok
∆GeneralEV; ∆EVsp; ∆StateCounter
ΞTime; ΞHandle

st = u7
hPos = up
1000≤ now− spEV
gEV ′ = idle
spGEV ′ = now
spEV ′ = now
st′ = init
stGEV ′ = stGEV

The schema for reverting the order at this point is:

UpDown8
∆StateCounter
ΞGeneralEV; ΞEVsp; ΞTime; ΞHandle

st = u7
hPos = down
st′ = d1

48 Z Specification of the Landing Gear System

Up8E
ΞGeneralEV; ΞEVsp; ΞStateCounter; ΞTime; ΞHandle

¬ (st = u7 ∧ 1000≤ now− spEV)

Up8 == Up8Ok ∨ UpDown8 ∨ Up8E

4.6.3 Outgoing sequence

The outgoing sequence has a similar structure and similar predicates with respect to the retractions se-
quences, so no explanations are given.

Down1Ok
∆GeneralEV; ∆EVst; ∆StateCounter
ΞTime; ΞHandle

st = d0
hPos = down
200≤ now− stEV ∨ stEV = 0
gEV ′ = pressing
stGEV ′ = now
stEV ′ = now
st′ = d1
spGEV ′ = spGEV

Down1E
ΞGeneralEV; ΞEVst; ΞStateCounter; ΞTime; ΞHandle

¬ (st = d0 ∧ hPos = down ∧ (200≤ now− stEV ∨ stEV = 0))

Down1 == Down1Ok ∨ Down1E

Down2Ok
∆DoorOpeningEV; ∆EVst; ∆StateCounter
ΞDoorClosingEV; ΞTime; ΞHandle

st = d1
hPos = down
200≤ now− stEV
100≤ now− stDCEV ∨ stDCEV = 0
doEV ′ = pressing
stDOEV ′ = now
stEV ′ = now
st′ = d2

M. Cristiá 49

DownUp2
∆StateCounter
ΞDoorOpeningEV; ∆EVst; ΞDoorClosingEV; ΞTime; ΞHandle

hPos = up
st = d1
st′ = u1

Down2E
ΞDoorOpeningEV; ΞEVst; ΞStateCounter; ΞDoorClosingEV; ΞTime; ΞHandle

¬ (st = d1 ∧ 200≤ now− stEV ∧ (100≤ now− stDCEV ∨ stDCEV = 0))

Down2 == Down2Ok ∨ DownUp2 ∨ Down2E

Down3Ok
∆GearsExtendingEV; ∆EVst; ∆StateCounter
ΞGearsRetractingEV; ΞDoorsOpening; ΞTime; ΞHandle

st = d2
hPos = down
randOp = {y}
200≤ now− stEV
100≤ now− stGREV ∨ stGREV = 0
geEV ′ = pressing
stGEEV ′ = now
stEV ′ = now
st′ = d3

DownUp3
∆StateCounter
ΞGearsExtendingEV; ΞEVst; ΞGearsRetractingEV; ΞDoorsOpening; ΞTime; ΞHandle

hPos = up
st = d2
st′ = u2

Down3E
ΞGearsExtendingEV; ΞEVst; ΞStateCounter
ΞGearsRetractingEV; ΞDoorsOpening; ΞTime; ΞHandle

¬ (st = d2
∧ randOp = {y} ∧ 200≤ now− stEV ∧ (100≤ now− stGREV ∨ stGREV = 0))

50 Z Specification of the Landing Gear System

Down3 == Down3Ok ∨ DownUp3 ∨ Down3E

Down4Ok
∆GearsExtendingEV; ∆EVsp; ∆StateCounter
ΞGearsExtending; ΞTime; ΞHandle

st = d3
hPos = down
rangExt = {y}
1000≤ now− spEV ∨ spEV = 0
geEV ′ = idle
spEV ′ = now
st′ = d4
stGEEV ′ = stGEEV

DownUp4
∆StateCounter; ∆EVsp; ∆GearsExtendingEV
ΞGearsExtending; ΞTime; ΞHandle

hPos = up
st = d3
geEV ′ = idle
spEV ′ = now
st′ = u2
stGEEV ′ = stGEEV

Down4E
ΞGearsExtendingEV; ΞEVsp; ΞStateCounter; ΞGearsExtending; ΞTime; ΞHandle

¬ (st = d3 ∧ rangExt = {y} ∧ (1000≤ now− spEV ∨ spEV = 0))

Down4 == Down4Ok ∨ DownUp4 ∨ Down4E

Down5Ok
∆DoorOpeningEV; ∆EVsp; ∆StateCounter
ΞTime; ΞHandle

st = d4
hPos = down
1000≤ now− spEV
doEV ′ = idle
spEV ′ = now
st′ = d5
stDOEV ′ = stDOEV

M. Cristiá 51

DownUp5
∆StateCounter
ΞDoorOpeningEV; ΞEVsp; ΞTime; ΞHandle

hPos = up
st = d4
st′ = u2

Down5E
ΞDoorOpeningEV; ΞEVsp; ΞStateCounter; ΞTime; ΞHandle

¬ (st = d4 ∧ 1000≤ now− spEV)

Down5 == Down5Ok ∨ DownUp5 ∨ Down5E

Down6Ok
∆DoorClosingEV; ∆EVst; ∆StateCounter
ΞDoorOpeningEV; ΞTime; ΞHandle

st = d5
hPos = down
200≤ now− stEV
100≤ now− stDOEV
dcEV ′ = pressing
stDCEV ′ = now
stEV ′ = now
st′ = d6

DownUp6
∆StateCounter
ΞDoorClosingEV; ΞEVst; ΞDoorOpeningEV; ΞTime; ΞHandle

hPos = up
st = d5
st′ = u1

Down6E
ΞDoorClosingEV; ΞEVst; ΞStateCounter; ΞDoorOpeningEV; ΞTime; ΞHandle

¬ (st = d5 ∧ 200≤ now− stEV ∧ 100≤ now− stDOEV)

Down6 == Down6Ok ∨ DownUp6 ∨ Down6E

52 Z Specification of the Landing Gear System

Down7Ok
∆DoorClosingEV; ∆EVsp; ∆StateCounter
ΞDoorsClosing; ΞTime; ΞHandle

st = d6
hPos = down
randCl = {y}
1000≤ now− spEV
dcEV ′ = idle
spEV ′ = now
st′ = d7
stDCEV ′ = stDCEV

DownUp7
∆StateCounter; ∆EVsp; ∆DoorClosingEV
ΞDoorsClosing; ΞTime; ΞHandle

hPos = up
st = d6
dcEV ′ = idle
spEV ′ = now
st′ = u1
stDCEV ′ = stDCEV

Down7E
ΞDoorClosingEV; ΞEVsp; ΞStateCounter; ΞDoorsClosing; ΞTime; ΞHandle

¬ (st = d6 ∧ randCl = {y} ∧ 1000≤ now− spEV)

Down7 == Down7Ok ∨ DownUp7 ∨ Down7E

Down8Ok
∆GeneralEV; ∆EVsp; ∆StateCounter
ΞTime; ΞHandle

st = d7
hPos = down
1000≤ now− spEV
gEV ′ = idle
spGEV ′ = now
spEV ′ = now
st′ = init
stGEV ′ = stGEV

M. Cristiá 53

DownUp8
∆StateCounter
ΞGeneralEV; ΞEVsp; ΞTime; ΞHandle

hPos = up
st = d7
st′ = u1

Down8E
ΞGeneralEV; ΞEVsp; ΞStateCounter; ΞTime; ΞHandle

¬ (st = d7 ∧ 1000≤ now− spEV)

Down8 == Down8Ok ∨ DownUp8 ∨ Down8E

4.7 Time Advance

Although Z is not very well equipped to deal with time constraints and with real-time specifications in
general [16], the following schema specifies that time always advances at a rate of one time unit (in this
case one millisecond). Since Tick is always enabled it can be “executed” whenever there are no other
operation being “executed”.

Tick
∆Time

now′ = now+1

4.8 Operations Concerning Health Monitoring

Health monitoring concerns with detecting situations that are deemed as anomalies. The anomalies
concerning sensor validity are formalized in Sect. 4.5. Then, this section contains the rest of the situations
that can cause an anomaly. When an anomaly is detected (i.e. when the conditions for an anomaly
become true) the software executes an action whose specification is the following schema:

Anomaly == [∆CockpitA|lgsfl′ = on]

Recall that is has been assumed that the software stops when this action is executed and that lgsfl
represents both the actual light in the cockpit and an internal state variable whose value can be observed
and modified by the software.

4.8.1 Anomalies Related to the Analogical Switch

The first anomaly related to the analogical switch is produced when it is seen open 1 second after the
handle position has changed. This situation is formalized in the following schema:

54 Z Specification of the Landing Gear System

AnalogicalSwitchM1
ΞAnalogicalSwitch; ΞHandle; ΞTime

as = y
1000≤ now− lHPCh
lHPCh 6= 0

The analogical switch is open when as = y and lHPCh records the time of the last change of the
handle if it is different than zero (because if it is equal to zero it means the handle was never changed).

If the conditions given in AnalogicalSwitchM1 are not true, then the system has nothing to do. There-
fore, a schema totalizing the operation is given:

AnalogicalSwitchM1E
ΞAnalogicalSwitch; ΞHandle; ΞTime

¬ (as = y ∧ 1000≤ now− lHPCh ∧ lHPCh 6= 0)

The second situation related to the analogical switch that causes an anomaly is produced when it
is seen closed 1.5 second after a time interval of 20 seconds during which the handle position has not
changed. This is formalized by the following schema:

AnalogicalSwitchM2
ΞAnalogicalSwitch; ΞHandle; ΞTime

as = n
1500≤ now− l20
l20 6= 0

The analogical switch is closed when as = n and l20 records the last time the handle position has not
changed for 20 seconds. This schema is complemented as the previous one:

AnalogicalSwitchM2E
ΞAnalogicalSwitch; ΞHandle; ΞTime

¬ (as = n ∧ 1500≤ now− l20 ∧ l20 6= 0)

The full operation is specified as follows:

AnalogicalSwitchM ==
((AnalogicalSwitchM1 ∨ AnalogicalSwitchM2) ∧ Anomaly)
∨ AnalogicalSwitchM1E ∨ AnalogicalSwitchM2E

AnalogicalSwitchM2 shows that it is necessary to specify an operation that monitors when 20 seconds
have elapsed since the last change of the handle position. The next schema updates the variable l20 when
that condition holds:

M. Cristiá 55

HandleNotChangedOk
∆Handle; ΞTime

now− lHPCh = 20
lHPCh 6= 0
l20′ = now
hPos′ = hPos
lHPCh′ = lHPCh

HandleNotChangedE
ΞHandle; ΞTime

¬ (now− lHPCh = 20 ∧ lHPCh 6= 0)

HandleNotChanged == HandleNotChangedOk ∨ HandleNotChangedE

Perhaps, as Lamport suggests [25, Chapter 9], the following precondition for HandleNotChanged
would be more realizable:

|now− lHPCh| ≤ 20+ ε

for some ε > 0. Or alternatively this one would be as realizable and closer to the real requirement:

now− lHPCh≥ 20+ ε

4.8.2 Anomalies Related to the Hydraulic Circuit

The situations where an anomaly related to the hydraulic circuit is produced are the following:

• If the hydraulic circuit is still unpressurized 2 seconds after the general electro-valve has been
stimulated, then an anomaly is detected. The following schema formalizes this situation:

HydraulicCircuitM1
ΞHydraulicCircuit; ΞGeneralEV; ΞTime

hc = n
2000≤ now− stGEV
stGEV 6= 0

HydraulicCircuitM1E
ΞHydraulicCircuit; ΞGeneralEV; ΞTime

¬ (hc = n ∧ 2000≤ now− stGEV ∧ stGEV 6= 0)

56 Z Specification of the Landing Gear System

• If the hydraulic circuit is still pressurized 10 seconds after the general electro- valve has been
stopped, then an anomaly is detected. The following schema formalizes this situation:

HydraulicCircuitM2
ΞHydraulicCircuit; ΞGeneralEV; ΞTime

hc = y
10000≤ now− spGEV
spGEV 6= 0

HydraulicCircuitM2E
ΞHydraulicCircuit; ΞGeneralEV; ΞTime

¬ (hc = y ∧ 10000≤ now− spGEV ∧ spGEV 6= 0)

Therefore, the full operation is as follows:

HydraulicCircuitM ==
(HydraulicCircuitM1 ∨ HydraulicCircuitM2) ∧ Anomaly
∨ HydraulicCircuitM1E ∨ HydraulicCircuitM2E

4.8.3 Anomalies Related to Doors Motion

There are four situations related to door motion that lead to an anomaly. Since these are quite similar in
spirit to the previous ones there will be no comments.

DoorsMotionM1
ΞDoors; ΞDoorOpeningEV; ΞTime

randCl 6= {n}
7000≤ now− stDOEV

DoorsMotionM1E
ΞDoors; ΞDoorOpeningEV; ΞTime

¬ (randCl 6= {n} ∧ 7000≤ now− stDOEV)

DoorsMotionM2
ΞDoorsOpening; ΞDoorOpeningEV; ΞTime

randOp 6= {y}
7000≤ now− stDOEV

M. Cristiá 57

DoorsMotionM2E
ΞDoorsOpening; ΞDoorOpeningEV; ΞTime

¬ (randOp 6= {y} ∧ 7000≤ now− stDOEV)

DoorsMotionM3
ΞDoorsOpening; ΞDoorClosingEV; ΞTime

randOp 6= {n}
7000≤ now− stDCEV

DoorsMotionM3E
ΞDoorsOpening; ΞDoorClosingEV; ΞTime

¬ (randOp 6= {n} ∧ 7000≤ now− stDCEV)

DoorsMotionM4
ΞDoors; ΞDoorClosingEV; ΞTime

randCl 6= {y}
7000≤ now− stDCEV

DoorsMotionM4E
ΞDoors; ΞDoorClosingEV; ΞTime

¬ (randCl 6= {y} ∧ 7000≤ now− stDCEV)

DoorsMotionM ==
(DoorsMotionM1 ∨ DoorsMotionM2 ∨ DoorsMotionM3 ∨ DoorsMotionM4) ∧ Anomaly
∨ DoorsMotionM1E ∨ DoorsMotionM2E ∨ DoorsMotionM3E ∨ DoorsMotionM4E

4.8.4 Anomalies Related to Gears Motion

There are four situations related to gear motion that lead to an anomaly. Since these are quite similar in
spirit to the previous ones there will be no comments.

GearsMotionM1
ΞGearsRetracting; ΞGearsRetractingEV; ΞTime

rangRec 6= {n}
7000≤ now− stGREV

58 Z Specification of the Landing Gear System

GearsMotionM1E
ΞGearsRetracting; ΞGearsRetractingEV; ΞTime

¬ (rangRec 6= {n} ∧ 7000≤ now− stGREV)

GearsMotionM2
ΞGearsRetracting; ΞGearsRetractingEV; ΞTime

rangRec 6= {y}
10000≤ now− stGREV

GearsMotionM2E
ΞGearsRetracting; ΞGearsRetractingEV; ΞTime

¬ (rangRec 6= {y} ∧ 10000≤ now− stGREV)

GearsMotionM3
ΞGearsExtending; ΞGearsExtendingEV; ΞTime

rangExt 6= {n}
7000≤ now− stGEEV

GearsMotionM3E
ΞGearsExtending; ΞGearsExtendingEV; ΞTime

¬ (rangExt 6= {n} ∧ 7000≤ now− stGEEV)

GearsMotionM4
ΞGearsExtending; ΞGearsExtendingEV; ΞTime

rangExt 6= {y}
10000≤ now− stGEEV

GearsMotionM4E
ΞGearsExtending; ΞGearsExtendingEV; ΞTime

¬ (rangExt 6= {y} ∧ 10000≤ now− stGEEV)

GearsMotionM ==
(GearsMotionM1 ∨ GearsMotionM2 ∨ GearsMotionM3 ∨ GearsMotionM4) ∧ Anomaly
∨ GearsMotionM1E ∨ GearsMotionM2E ∨ GearsMotionM3E ∨ GearsMotionM4E

M. Cristiá 59

loadspec answer-ttf-ft.tex

replaceaxdef

selop ReadGearsExtending

selop ReadGearsRetracting

selop ReadShockAbsorbers

selop ReadDoorsOpening

selop ReadDoorsClosing

selop ReadHydraulicCircuit

selop ReadAnalogicalSwitch

selop ChangeHandle

selop GearsLockedDown

selop GearsManeuvering

selop Up1

selop Up2

selop Up3

selop Up4

selop Up5

selop Up6

selop Up7

selop Up8

selop Down1

selop Down2

selop Down3

selop Down4

selop Down5

selop Down6

selop Down7

selop Down8

selop AnalogicalSwitchM

selop HandleNotChanged

selop HydraulicCircuitM

selop DoorsMotionM

selop GearsMotionM

selop Valid

genalltt

addtactic ReadGearsExtending FT g?

addtactic ReadGearsRetracting FT g?

addtactic ReadShockAbsorbers FT g?

addtactic ReadDoorsOpening FT g?

addtactic ReadDoorsClosing FT g?

addtactic Valid SP \rres i? \rres \{y\}

addtactic Valid SP \rres i? \rres \{n\}

Figure 5: Fastest script (part 1)

60 Z Specification of the Landing Gear System

addtactic Up1_DNF_1 SP - now - stEV

addtactic Up1_DNF_1 SP \leq 200 \leq now - stEV

addtactic Up2_DNF_1 SP - now - stEV

addtactic Up2_DNF_1 SP \leq 200 \leq now - stEV

addtactic Up2_DNF_1 SP - now - stDCEV

addtactic Up2_DNF_1 SP \leq 100 \leq now - stDCEV

addtactic Up3_DNF_1 SP - now - stGEEV

addtactic Up3_DNF_1 SP \leq 100 \leq now - stGEEV

addtactic Up3_DNF_1 SP - now - stEV

addtactic Up3_DNF_1 SP \leq 200 \leq now - stEV

addtactic Up4_DNF_1 SP - now - spEV

addtactic Up4_DNF_1 SP \leq 1000 \leq now - spEV

addtactic Up5_DNF_1 SP - now - spEV

addtactic Up5_DNF_1 SP \leq 1000 \leq now - spEV

addtactic Up6_DNF_1 SP - now - stEV

addtactic Up6_DNF_1 SP \leq 200 \leq now - stEV

addtactic Up6_DNF_1 SP - now - stDOEV

addtactic Up6_DNF_1 SP \leq 100 \leq now - stDOEV

addtactic Up7_DNF_1 SP - now - spEV

addtactic Up7_DNF_1 SP \leq 1000 \leq now - spEV

addtactic Up8_DNF_1 SP - now - spEV

addtactic Up8_DNF_1 SP \leq 1000 \leq now - spEV

addtactic Down1_DNF_1 SP - now - stEV

addtactic Down1_DNF_1 SP \leq 200 \leq now - stEV

addtactic Down2_DNF_1 SP - now - stEV

addtactic Down2_DNF_1 SP \leq 200 \leq now - stEV

addtactic Down2_DNF_1 SP - now - stDCEV

addtactic Down2_DNF_1 SP \leq 100 \leq now - stDCEV

addtactic Down3_DNF_1 SP - now - stEV

addtactic Down3_DNF_1 SP \leq 200 \leq now - stEV

addtactic Down3_DNF_1 SP - now - stGREV

addtactic Down3_DNF_1 SP \leq 100 \leq now - stGREV

addtactic Down4_DNF_1 SP - now - spEV

addtactic Down4_DNF_1 SP \leq 1000 \leq now - spEV

addtactic Down5_DNF_1 SP - now - spEV

addtactic Down5_DNF_1 SP \leq 1000 \leq now - spEV

addtactic Down6_DNF_1 SP - now - stEV

addtactic Down6_DNF_1 SP \leq 200 \leq now - stEV

addtactic Down6_DNF_1 SP - now - stDOEV

addtactic Down6_DNF_1 SP \leq 100 \leq now - stDOEV

addtactic Down7_DNF_1 SP - now - spEV

addtactic Down7_DNF_1 SP \leq 1000 \leq now - spEV

addtactic Down8_DNF_1 SP - now - spEV

addtactic Down8_DNF_1 SP \leq 1000 \leq now - spEV

Figure 6: Fastest script (part 2)

M. Cristiá 61

addtactic AnalogicalSwitchM_DNF_1 SP - now - lHPCh

addtactic AnalogicalSwitchM_DNF_1 SP \leq 1000 \leq now - lHPCh

addtactic AnalogicalSwitchM_DNF_2 SP - now - l20

addtactic AnalogicalSwitchM_DNF_2 SP \leq 1500 \leq now - l20

addtactic HandleNotChanged_DNF_1 SP - now - lHPCh

addtactic HydraulicCircuitM_DNF_1 SP - now - stGEV

addtactic HydraulicCircuitM_DNF_1 SP \leq 2000 \leq now - stGEV

addtactic HydraulicCircuitM_DNF_2 SP - now - spGEV

addtactic HydraulicCircuitM_DNF_2 SP \leq 10000 \leq now - spGEV

addtactic DoorsMotionM_DNF_1 SP - now - stDOEV

addtactic DoorsMotionM_DNF_1 SP \leq 7000 \leq now - stDOEV

addtactic DoorsMotionM_DNF_2 SP - now - stDOEV

addtactic DoorsMotionM_DNF_2 SP \leq 7000 \leq now - stDOEV

addtactic DoorsMotionM_DNF_3 SP - now - stDCEV

addtactic DoorsMotionM_DNF_3 SP \leq 7000 \leq now - stDCEV

addtactic DoorsMotionM_DNF_4 SP - now - stDCEV

addtactic DoorsMotionM_DNF_4 SP \leq 7000 \leq now - stDCEV

addtactic GearsMotionM_DNF_1 SP - now - stGREV

addtactic GearsMotionM_DNF_1 SP \leq 7000 \leq now - stGREV

addtactic GearsMotionM_DNF_2 SP - now - stGREV

addtactic GearsMotionM_DNF_2 SP \leq 10000 \leq now - stGREV

addtactic GearsMotionM_DNF_3 SP - now - stGEEV

addtactic GearsMotionM_DNF_3 SP \leq 7000 \leq now - stGEEV

addtactic GearsMotionM_DNF_4 SP - now - stGEEV

addtactic GearsMotionM_DNF_4 SP \leq 10000 \leq now - stGEEV

genalltt

prunett

genalltca

Figure 7: Fastest script (part 3)

62 Z Specification of the Landing Gear System

5 Test Case Generation from the Z Specification

Figures 5-7 list the Fastest script used to generate test case from the LGS specification. The resulting test
conditions and abstract test cases automatically generated are listed in appendices A and B, respectively.

6 Conclusions

After writing a Z specification of the LGS the Fastest tool was used to automatically generate almost 400
functional test cases. This shows that a formal specification helps not only to write the implementation
from a solid document but that it also helps in verifying the former.

References

[1] J.-R. Abrial (1996): The B-book: Assigning Programs to Meanings. Cambridge University Press, New York,
NY, USA.

[2] J. Barnes, R. Chapman, R. Johnson, J. Widmaier, D. Cooper & B. Everett (2006): Engineering the Tokeneer
enclave protection software. In: Proceedings of the IEEE International Symposium on Secure Software
Engineering, IEEE.

[3] Len Bass, Paul Clements & Rick Kazman (2003): Software Architecture in Practice, 2 edition. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA.

[4] E. Bernard, B. Legeard, X. Luck & F. Peureux (2004): Generation of Test Sequences from Formal Specifica-
tions: GSM 11-11 Standard Case Study. International Journal of Software Practice and Experience 34(10),
pp. 915–948.

[5] Gilles Bernot, Marie Claude Gaudel & Bruno Marre (1991): Software testing based on formal specifications:
a theory and a tool. Softw. Eng. J. 6(6), pp. 387–405.

[6] Frédéric Boniol & Virginie Wiels (2014): Landing gear system. Technical Report, ONERA. Available at
http://www.irit.fr/ABZ2014/landing_system.pdf.

[7] Jonathan Bowen: Formal Methods. http://vl.fmnet.info/.

[8] Frederick P. Brooks, Jr. (1995): The mythical man-month (anniversary ed.). Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA.

[9] Coq Development Team (2008): The Coq Proof Assistant Reference Manual, Version 8.2. LogiCal Project,
Palaiseau, France.

[10] Maximiliano Cristiá (2014): Test Case Generation from a Z Specification of the Landing Gear System.
Technical Report, CIFASIS and UNR. Available at https://www.dropbox.com/s/8dlyu2mctmzw57m/
answer-ttf.pdf.

[11] Maximiliano Cristiá, Pablo Albertengo, Claudia Frydman, Brian Plüss & Pablo Rodrı́guez Monetti (2014):
Tool support for the Test Template Framework. Software Testing, Verification and Reliability 24(1), pp. 3–37,
doi:10.1002/stvr.1477. Available at http://dx.doi.org/10.1002/stvr.1477.

[12] Maximiliano Cristiá, Diego Hollmann, Pablo Albertengo, Claudia S. Frydman & Pablo Rodrı́guez Monetti
(2011): A Language for Test Case Refinement in the Test Template Framework. In Shengchao Qin & Zongyan
Qiu, editors: ICFEM, Lecture Notes in Computer Science 6991, Springer, pp. 601–616. Available at http:
//dx.doi.org/10.1007/978-3-642-24559-6_40.

[13] Maximiliano Cristiá, Gianfranco Rossi & Claudia S. Frydman (2013): {log} as a Test Case Generator for the
Test Template Framework. In Robert M. Hierons, Mercedes G. Merayo & Mario Bravetti, editors: SEFM,
Lecture Notes in Computer Science 8137, Springer, pp. 229–243. Available at http://dx.doi.org/10.
1007/978-3-642-40561-7_16.

http://www.irit.fr/ABZ2014/landing_system.pdf
https://www.dropbox.com/s/8dlyu2mctmzw57m/answer-ttf.pdf
https://www.dropbox.com/s/8dlyu2mctmzw57m/answer-ttf.pdf
http://dx.doi.org/10.1002/stvr.1477
http://dx.doi.org/10.1002/stvr.1477
http://dx.doi.org/10.1007/978-3-642-24559-6_40
http://dx.doi.org/10.1007/978-3-642-24559-6_40
http://dx.doi.org/10.1007/978-3-642-40561-7_16
http://dx.doi.org/10.1007/978-3-642-40561-7_16

M. Cristiá 63

[14] Jeremy Dick & Alain Faivre (1993): Automating the Generation and Sequencing of Test Cases from Model-
Based Specifications. In: FME ’93: Proceedings of the First International Symposium of Formal Methods
Europe on Industrial-Strength Formal Methods, Springer-Verlag, London, UK, pp. 268–284.

[15] R. Dupuis, P. Bourque, A. Abran, J. W. Moore & L. L. Tripp (2001): The SWEBOK Project: Guide to the Soft-
ware Engineering Body of Knowledge. Stone Man Trial Version 1.00, http://www.swebok.org/ [01/12/2003].

[16] Andy S. Evans (1994): Specifying and verifying concurrent systems using Z. In Maurice Naftalin, Tim Denvir
& Miquel Bertran, editors: FME ’94: Industrial Benefit of Formal Methods, pp. 366–380.

[17] Leo Freitas, Mark Utting, Petra Malik & Tim Miller: Community Z Tools (CZT) Project. Available at
http://czt.sourceforge.net. Last access: November 2011.

[18] Marie-Claude Gaudel (1995): Testing Can Be Formal, Too. In Peter D. Mosses, Mogens Nielsen & Michael I.
Schwartzbach, editors: TAPSOFT, Lecture Notes in Computer Science 915, Springer, pp. 82–96. Available
at http://dx.doi.org/10.1007/3-540-59293-8_188.

[19] Carlo Ghezzi, Mehdi Jazayeri & Dino Mandrioli (2003): Fundamentals of software engineering (2nd ed.).
Prentice Hall.

[20] Wolfgang Grieskamp, Yuri Gurevich, Wolfram Schulte & Margus Veanes (2002): Generating finite state ma-
chines from abstract state machines. In: ISSTA ’02: Proceedings of the 2002 ACM SIGSOFT international
symposium on Software testing and analysis, ACM, New York, NY, USA, pp. 112–122.

[21] Robert M. Hierons, Kirill Bogdanov, Jonathan P. Bowen, Rance Cleaveland, John Derrick, Jeremy Dick,
Marian Gheorghe, Mark Harman, Kalpesh Kapoor, Paul Krause, Gerald Lüttgen, Anthony J. H. Simons,
Sergiy Vilkomir, Martin R. Woodward & Hussein Zedan (2009): Using formal specifications to support
testing. ACM Comput. Surv. 41(2), pp. 1–76.

[22] M.G. Hinchey & J.P. Bowen (1999): Industrial-strength formal methods in practice. Formal approaches to
computing and information technology, Springer. Available at http://books.google.com/books?id=
CWTu_Xs5sRcC.

[23] ISO (2002): Information Technology – Z Formal Specification Notation – Syntax, Type System and Semantics.
Technical Report ISO/IEC 13568, International Organization for Standardization.

[24] Jonathan Jacky (1996): The way of Z: practical programming with formal methods. Cambridge University
Press, New York, NY, USA.

[25] Leslie Lamport (2002): Specifying Systems: The TLA+ Language and Tools for Hardware and Software
Engineers. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.

[26] Bruno Legeard, Fabien Peureux & Mark Utting (2002): A Comparison of the BTT and TTF Test-Generation
Methods. In: ZB ’02: Proceedings of the 2nd International Conference of B and Z Users on Formal Specifi-
cation and Development in Z and B, Springer-Verlag, London, UK, pp. 309–329.

[27] Steve McConnell (2004): Code Complete, Second Edition. Microsoft Press, Redmond, WA, USA.

[28] Bertrand Meyer, Arno Fiva, Ilinca Ciupa, Andreas Leitner, Yi Wei & Emmanuel Stapf (2009): Programs
That Test Themselves. Computer 42, pp. 46–55, doi:10.1109/MC.2009.296. Available at http://portal.
acm.org/citation.cfm?id=1638584.1638626.

[29] Arilo Dias Neto, Rajesh Subramanyan, Marlon Vieira, Guilherme Horta Travassos & Forrest Shull (2008):
Improving Evidence about Software Technologies: A Look at Model-Based Testing. IEEE Softw. 25(3), pp.
10–13, doi:http://dx.doi.org/10.1109/MS.2008.64.

[30] Shari Lawrence Pfleeger (2001): Software Engineering: Theory and Practice. Prentice Hall PTR, Upper
Saddle River, NJ, USA.

[31] Gianfranco Rossi: {log}. Available at http://www.math.unipr.it/~gianfr/setlog.Home.html. Last
access: July 2012.

[32] RTI (2002): The Economic Impacts of Inadequate Infrastructure for Software Testing. Planning Report 02-3,
National Institute of Standards and Technology, Gaithersburg, MD. Available at http://www.nist.gov/
director/prog-ofc/report02-3.pdf.

http://czt.sourceforge.net
http://dx.doi.org/10.1007/3-540-59293-8_188
http://books.google.com/books?id=CWTu_Xs5sRcC
http://books.google.com/books?id=CWTu_Xs5sRcC
http://dx.doi.org/10.1109/MC.2009.296
http://portal.acm.org/citation.cfm?id=1638584.1638626
http://portal.acm.org/citation.cfm?id=1638584.1638626
http://dx.doi.org/http://dx.doi.org/10.1109/MS.2008.64
http://www.math.unipr.it/~gianfr/setlog.Home.html
http://www.nist.gov/director/prog-ofc/report02-3.pdf
http://www.nist.gov/director/prog-ofc/report02-3.pdf

64 Z Specification of the Landing Gear System

[33] Mark Saaltink (1997): The Z/EVES System. In Jonathan P. Bowen, Michael G. Hinchey & David Till, editors:
ZUM, Lecture Notes in Computer Science 1212, Springer, pp. 72–85. Available at http://dx.doi.org/
10.1007/BFb0027284.

[34] S. Souza, J. Maldonado, S. Fabbri & P. Masiero (2000): Statecharts Specifications: A Family of Coverage
Testing Criteria. In: CLEI’2000 - XXVI Latin-American Conference of Informatics, CLEI, México DF,
México.

[35] J. M. Spivey (1992): The Z notation: a reference manual. Prentice Hall International (UK) Ltd., Hertford-
shire, UK, UK.

[36] P. Stocks (1993): Applying Formal Methods to Software Testing. Ph.D. thesis, Department of Computer
Science, University of Queensland.

[37] P. Stocks & D. Carrington (1996): A Framework for Specification-Based Testing. IEEE Transactions on
Software Engineering 22(11), pp. 777–793.

[38] Mark Utting & Bruno Legeard (2006): Practical Model-Based Testing: A Tools Approach. Morgan Kauf-
mann Publishers Inc., San Francisco, CA, USA.

A Test Conditions

ReadGearsExtending DNF 2
ReadGearsExtending VIS

#(v?B{y})≤ #(v?B{n})
dom(v?B{n}) = SENS

ReadGearsExtending FT 4
ReadGearsExtending DNF 2

g? = forward

ReadGearsExtending FT 5
ReadGearsExtending DNF 2

g? = left

ReadGearsExtending FT 6
ReadGearsExtending DNF 2

g? = right

ReadGearsExtending DNF 3
ReadGearsExtending VIS

dom(v?B{y}) = SENS
#(v?B{y})> #(v?B{n})

ReadGearsExtending FT 7
ReadGearsExtending DNF 3

g? = forward

ReadGearsExtending FT 8
ReadGearsExtending DNF 3

g? = left

ReadGearsExtending FT 9
ReadGearsExtending DNF 3

g? = right

ReadGearsExtending DNF 6
ReadGearsExtending VIS

sGExt g? = SENS
dom(v?B{y})⊂ SENS
#(v?B{y})> #(v?B{n})

ReadGearsExtending FT 13
ReadGearsExtending DNF 6

g? = forward

http://dx.doi.org/10.1007/BFb0027284
http://dx.doi.org/10.1007/BFb0027284

M. Cristiá 65

ReadGearsExtending FT 14
ReadGearsExtending DNF 6

g? = left

ReadGearsExtending FT 15
ReadGearsExtending DNF 6

g? = right

ReadGearsExtending DNF 7
ReadGearsExtending VIS

sGExt g? = SENS
#(v?B{y})≤ #(v?B{n})
dom(v?B{n})⊂ SENS

ReadGearsExtending FT 16
ReadGearsExtending DNF 7

g? = forward

ReadGearsExtending FT 17
ReadGearsExtending DNF 7

g? = left

ReadGearsExtending FT 18
ReadGearsExtending DNF 7

g? = right

ReadGearsExtending DNF 8
ReadGearsExtending VIS

sGExt g? = SENS
dom(v?B{y})⊂ SENS
dom(v?B{n})⊂ SENS

ReadGearsExtending FT 19
ReadGearsExtending DNF 8

g? = forward

ReadGearsExtending FT 20
ReadGearsExtending DNF 8

g? = left

ReadGearsExtending FT 21
ReadGearsExtending DNF 8

g? = right

ReadGearsExtending DNF 10
ReadGearsExtending VIS

sGExt g?⊂ SENS
dom(sGExt g?C v?B{y}) = sGExt g?
#(sGExt g?C v?B{y})> #(sGExt g?C v?B{n})

ReadGearsExtending FT 25
ReadGearsExtending DNF 10

g? = forward

ReadGearsExtending FT 26
ReadGearsExtending DNF 10

g? = left

ReadGearsExtending FT 27
ReadGearsExtending DNF 10

g? = right

ReadGearsExtending DNF 11
ReadGearsExtending VIS

sGExt g?⊂ SENS
#(sGExt g?C v?B{y})≤ #(sGExt g?C v?B{n})
dom(sGExt g?C v?B{n}) = sGExt g?

66 Z Specification of the Landing Gear System

ReadGearsExtending FT 28
ReadGearsExtending DNF 11

g? = forward

ReadGearsExtending FT 29
ReadGearsExtending DNF 11

g? = left

ReadGearsExtending FT 30
ReadGearsExtending DNF 11

g? = right

ReadGearsExtending DNF 12
ReadGearsExtending VIS

sGExt g?⊂ SENS
dom(sGExt g?C v?B{y}) = sGExt g?
dom(sGExt g?C v?B{n}) = sGExt g?

ReadGearsExtending FT 31
ReadGearsExtending DNF 12

g? = forward

ReadGearsExtending FT 32
ReadGearsExtending DNF 12

g? = left

ReadGearsExtending FT 33
ReadGearsExtending DNF 12

g? = right

ReadGearsRetracting DNF 2
ReadGearsRetracting VIS

#(v?B{y})≤ #(v?B{n})
dom(v?B{n}) = SENS

ReadGearsRetracting FT 4
ReadGearsRetracting DNF 2

g? = forward

ReadGearsRetracting FT 5
ReadGearsRetracting DNF 2

g? = left

ReadGearsRetracting FT 6
ReadGearsRetracting DNF 2

g? = right

ReadGearsRetracting DNF 3
ReadGearsRetracting VIS

dom(v?B{y}) = SENS
#(v?B{y})> #(v?B{n})

ReadGearsRetracting FT 7
ReadGearsRetracting DNF 3

g? = forward

ReadGearsRetracting FT 8
ReadGearsRetracting DNF 3

g? = left

ReadGearsRetracting FT 9
ReadGearsRetracting DNF 3

g? = right

ReadGearsRetracting DNF 6
ReadGearsRetracting VIS

sGRecg? = SENS
dom(v?B{y})⊂ SENS
#(v?B{y})> #(v?B{n})

M. Cristiá 67

ReadGearsRetracting FT 13
ReadGearsRetracting DNF 6

g? = forward

ReadGearsRetracting FT 14
ReadGearsRetracting DNF 6

g? = left

ReadGearsRetracting FT 15
ReadGearsRetracting DNF 6

g? = right

ReadGearsRetracting DNF 7
ReadGearsRetracting VIS

sGRecg? = SENS
#(v?B{y})≤ #(v?B{n})
dom(v?B{n})⊂ SENS

ReadGearsRetracting FT 16
ReadGearsRetracting DNF 7

g? = forward

ReadGearsRetracting FT 17
ReadGearsRetracting DNF 7

g? = left

ReadGearsRetracting FT 18
ReadGearsRetracting DNF 7

g? = right

ReadGearsRetracting DNF 8
ReadGearsRetracting VIS

sGRecg? = SENS
dom(v?B{y})⊂ SENS
dom(v?B{n})⊂ SENS

ReadGearsRetracting FT 19
ReadGearsRetracting DNF 8

g? = forward

ReadGearsRetracting FT 20
ReadGearsRetracting DNF 8

g? = left

ReadGearsRetracting FT 21
ReadGearsRetracting DNF 8

g? = right

ReadGearsRetracting DNF 10
ReadGearsRetracting VIS

sGRecg?⊂ SENS
dom(sGRecg?C v?B{y}) = sGRecg?
#(sGRecg?C v?B{y})> #(sGRecg?C v?B{n})

ReadGearsRetracting FT 25
ReadGearsRetracting DNF 10

g? = forward

ReadGearsRetracting FT 26
ReadGearsRetracting DNF 10

g? = left

ReadGearsRetracting FT 27
ReadGearsRetracting DNF 10

g? = right

ReadGearsRetracting DNF 11
ReadGearsRetracting VIS

sGRecg?⊂ SENS
#(sGRecg?C v?B{y})≤ #(sGRecg?C v?B{n})
dom(sGRecg?C v?B{n}) = sGRecg?

68 Z Specification of the Landing Gear System

ReadGearsRetracting FT 28
ReadGearsRetracting DNF 11

g? = forward

ReadGearsRetracting FT 29
ReadGearsRetracting DNF 11

g? = left

ReadGearsRetracting FT 30
ReadGearsRetracting DNF 11

g? = right

ReadGearsRetracting DNF 12
ReadGearsRetracting VIS

sGRecg?⊂ SENS
dom(sGRecg?C v?B{y}) = sGRecg?
dom(sGRecg?C v?B{n}) = sGRecg?

ReadGearsRetracting FT 31
ReadGearsRetracting DNF 12

g? = forward

ReadGearsRetracting FT 32
ReadGearsRetracting DNF 12

g? = left

ReadGearsRetracting FT 33
ReadGearsRetracting DNF 12

g? = right

HandleNotChanged DNF 1
HandleNotChanged VIS

now− lHPCh = 20
lHPCh 6= 0

HandleNotChanged SP 4
HandleNotChanged DNF 1

now > 0
lHPCh > 0
now < lHPCh

HandleNotChanged SP 6
HandleNotChanged DNF 1

now > 0
lHPCh > 0
now > lHPCh

HandleNotChanged DNF 2
HandleNotChanged VIS

now− lHPCh 6= 20

HandleNotChanged DNF 3
HandleNotChanged VIS

lHPCh = 0

Up2 DNF 1
Up2 VIS

st = u1
hPos = up
200≤ now− stEV
100≤ now− stDCEV

Up2 SP 3
Up2 DNF 1

now > 0
stEV = 0

Up2 SP 257
Up2 SP 3

200 > 0
now− stEV > 0
200 < now− stEV

M. Cristiá 69

Up2 SP 321
Up2 SP 257

now > 0
stDCEV = 0

Up2 SP 335
Up2 SP 321

100 > 0
now− stDCEV > 0
100 < now− stDCEV

Up2 SP 324
Up2 SP 257

now > 0
stDCEV > 0
now > stDCEV

Up2 SP 347
Up2 SP 324

100 > 0
now− stDCEV > 0
100 < now− stDCEV

Up2 SP 348
Up2 SP 324

100 > 0
now− stDCEV > 0
100 = now− stDCEV

Up2 SP 258
Up2 SP 3

200 > 0
now− stEV > 0
200 = now− stEV

Up2 SP 351
Up2 SP 258

now > 0
stDCEV = 0

Up2 SP 365
Up2 SP 351

100 > 0
now− stDCEV > 0
100 < now− stDCEV

Up2 SP 354
Up2 SP 258

now > 0
stDCEV > 0
now > stDCEV

Up2 SP 377
Up2 SP 354

100 > 0
now− stDCEV > 0
100 < now− stDCEV

Up2 SP 378
Up2 SP 354

100 > 0
now− stDCEV > 0
100 = now− stDCEV

Up2 SP 6
Up2 DNF 1

now > 0
stEV > 0
now > stEV

70 Z Specification of the Landing Gear System

Up2 SP 629
Up2 SP 6

200 > 0
now− stEV > 0
200 < now− stEV

Up2 SP 693
Up2 SP 629

now > 0
stDCEV = 0

Up2 SP 707
Up2 SP 693

100 > 0
now− stDCEV > 0
100 < now− stDCEV

Up2 SP 696
Up2 SP 629

now > 0
stDCEV > 0
now > stDCEV

Up2 SP 719
Up2 SP 696

100 > 0
now− stDCEV > 0
100 < now− stDCEV

Up2 SP 720
Up2 SP 696

100 > 0
now− stDCEV > 0
100 = now− stDCEV

Up2 SP 630
Up2 SP 6

200 > 0
now− stEV > 0
200 = now− stEV

Up2 SP 723
Up2 SP 630

now > 0
stDCEV = 0

Up2 SP 737
Up2 SP 723

100 > 0
now− stDCEV > 0
100 < now− stDCEV

Up2 SP 726
Up2 SP 630

now > 0
stDCEV > 0
now > stDCEV

Up2 SP 749
Up2 SP 726

100 > 0
now− stDCEV > 0
100 < now− stDCEV

Up2 SP 750
Up2 SP 726

100 > 0
now− stDCEV > 0
100 = now− stDCEV

M. Cristiá 71

Up2 DNF 2
Up2 VIS

st = u1
hPos = up
200≤ now− stEV
stDCEV = 0

Up2 DNF 3
Up2 VIS

st = u1
hPos = down

Up2 DNF 4
Up2 VIS

st 6= u1

Up2 DNF 5
Up2 VIS

200 > now− stEV

Up2 DNF 6
Up2 VIS

100 > now− stDCEV
stDCEV 6= 0

ReadAnalogicalSwitch DNF 2
ReadAnalogicalSwitch VIS

#(v?B{y})≤ #(v?B{n})
dom(v?B{n}) = SENS

ReadAnalogicalSwitch DNF 3
ReadAnalogicalSwitch VIS

dom(v?B{y}) = SENS
#(v?B{y})> #(v?B{n})

ReadAnalogicalSwitch DNF 6
ReadAnalogicalSwitch VIS

sAS = SENS
dom(v?B{y})⊂ SENS
#(v?B{y})> #(v?B{n})

ReadAnalogicalSwitch DNF 7
ReadAnalogicalSwitch VIS

sAS = SENS
#(v?B{y})≤ #(v?B{n})
dom(v?B{n})⊂ SENS

ReadAnalogicalSwitch DNF 8
ReadAnalogicalSwitch VIS

sAS = SENS
dom(v?B{y})⊂ SENS
dom(v?B{n})⊂ SENS

ReadAnalogicalSwitch DNF 10
ReadAnalogicalSwitch VIS

sAS⊂ SENS
dom(sASC v?B{y}) = sAS
#(sASC v?B{y})> #(sASC v?B{n})

ReadAnalogicalSwitch DNF 11
ReadAnalogicalSwitch VIS

sAS⊂ SENS
#(sASC v?B{y})≤ #(sASC v?B{n})
dom(sASC v?B{n}) = sAS

ReadAnalogicalSwitch DNF 12
ReadAnalogicalSwitch VIS

sAS⊂ SENS
dom(sASC v?B{y}) = sAS
dom(sASC v?B{n}) = sAS

72 Z Specification of the Landing Gear System

Up1 DNF 1
Up1 VIS

st = u0
hPos = up
200≤ now− stEV

Up1 SP 3
Up1 DNF 1

now > 0
stEV = 0

Up1 SP 17
Up1 SP 3

200 > 0
now− stEV > 0
200 < now− stEV

Up1 SP 18
Up1 SP 3

200 > 0
now− stEV > 0
200 = now− stEV

Up1 SP 6
Up1 DNF 1

now > 0
stEV > 0
now > stEV

Up1 SP 29
Up1 SP 6

200 > 0
now− stEV > 0
200 < now− stEV

Up1 SP 30
Up1 SP 6

200 > 0
now− stEV > 0
200 = now− stEV

Up1 DNF 2
Up1 VIS

st = u0
hPos = up
stEV = 0

Up1 DNF 3
Up1 VIS

st 6= u0

Up1 DNF 4
Up1 VIS

hPos 6= up

Up1 DNF 5
Up1 VIS

200 > now− stEV
stEV 6= 0

Up4 DNF 1
Up4 VIS

st = u3
hPos = up
rangRec = {y}
1000≤ now− spEV

Up4 SP 3
Up4 DNF 1

now > 0
spEV = 0

M. Cristiá 73

Up4 SP 17
Up4 SP 3

1000 > 0
now− spEV > 0
1000 < now− spEV

Up4 SP 18
Up4 SP 3

1000 > 0
now− spEV > 0
1000 = now− spEV

Up4 SP 6
Up4 DNF 1

now > 0
spEV > 0
now > spEV

Up4 SP 29
Up4 SP 6

1000 > 0
now− spEV > 0
1000 < now− spEV

Up4 SP 30
Up4 SP 6

1000 > 0
now− spEV > 0
1000 = now− spEV

Up4 DNF 2
Up4 VIS

st = u3
hPos = up
rangRec = {y}
spEV = 0

Up4 DNF 3
Up4 VIS

st = u3
hPos = down

Up4 DNF 4
Up4 VIS

st 6= u3

Up4 DNF 5
Up4 VIS

rangRec 6= {y}

Up4 DNF 6
Up4 VIS

1000 > now− spEV
spEV 6= 0

ReadDoorsOpening DNF 2
ReadDoorsOpening VIS

#(v?B{y})≤ #(v?B{n})
dom(v?B{n}) = SENS

ReadDoorsOpening FT 4
ReadDoorsOpening DNF 2

g? = forward

ReadDoorsOpening FT 5
ReadDoorsOpening DNF 2

g? = left

ReadDoorsOpening FT 6
ReadDoorsOpening DNF 2

g? = right

74 Z Specification of the Landing Gear System

ReadDoorsOpening DNF 3
ReadDoorsOpening VIS

dom(v?B{y}) = SENS
#(v?B{y})> #(v?B{n})

ReadDoorsOpening FT 7
ReadDoorsOpening DNF 3

g? = forward

ReadDoorsOpening FT 8
ReadDoorsOpening DNF 3

g? = left

ReadDoorsOpening FT 9
ReadDoorsOpening DNF 3

g? = right

ReadDoorsOpening DNF 6
ReadDoorsOpening VIS

sDOpg? = SENS
dom(v?B{y})⊂ SENS
#(v?B{y})> #(v?B{n})

ReadDoorsOpening FT 13
ReadDoorsOpening DNF 6

g? = forward

ReadDoorsOpening FT 14
ReadDoorsOpening DNF 6

g? = left

ReadDoorsOpening FT 15
ReadDoorsOpening DNF 6

g? = right

ReadDoorsOpening DNF 7
ReadDoorsOpening VIS

sDOpg? = SENS
#(v?B{y})≤ #(v?B{n})
dom(v?B{n})⊂ SENS

ReadDoorsOpening FT 16
ReadDoorsOpening DNF 7

g? = forward

ReadDoorsOpening FT 17
ReadDoorsOpening DNF 7

g? = left

ReadDoorsOpening FT 18
ReadDoorsOpening DNF 7

g? = right

ReadDoorsOpening DNF 8
ReadDoorsOpening VIS

sDOpg? = SENS
dom(v?B{y})⊂ SENS
dom(v?B{n})⊂ SENS

ReadDoorsOpening FT 19
ReadDoorsOpening DNF 8

g? = forward

ReadDoorsOpening FT 20
ReadDoorsOpening DNF 8

g? = left

ReadDoorsOpening FT 21
ReadDoorsOpening DNF 8

g? = right

M. Cristiá 75

ReadDoorsOpening DNF 10
ReadDoorsOpening VIS

sDOpg?⊂ SENS
dom(sDOpg?C v?B{y}) = sDOpg?
#(sDOpg?C v?B{y})> #(sDOpg?C v?B{n})

ReadDoorsOpening FT 25
ReadDoorsOpening DNF 10

g? = forward

ReadDoorsOpening FT 26
ReadDoorsOpening DNF 10

g? = left

ReadDoorsOpening FT 27
ReadDoorsOpening DNF 10

g? = right

ReadDoorsOpening DNF 11
ReadDoorsOpening VIS

sDOpg?⊂ SENS
#(sDOpg?C v?B{y})≤ #(sDOpg?C v?B{n})
dom(sDOpg?C v?B{n}) = sDOpg?

ReadDoorsOpening FT 28
ReadDoorsOpening DNF 11

g? = forward

ReadDoorsOpening FT 29
ReadDoorsOpening DNF 11

g? = left

ReadDoorsOpening FT 30
ReadDoorsOpening DNF 11

g? = right

ReadDoorsOpening DNF 12
ReadDoorsOpening VIS

sDOpg?⊂ SENS
dom(sDOpg?C v?B{y}) = sDOpg?
dom(sDOpg?C v?B{n}) = sDOpg?

ReadDoorsOpening FT 31
ReadDoorsOpening DNF 12

g? = forward

ReadDoorsOpening FT 32
ReadDoorsOpening DNF 12

g? = left

ReadDoorsOpening FT 33
ReadDoorsOpening DNF 12

g? = right

ChangeHandle DNF 1
ChangeHandle VIS

hPos = down

ChangeHandle DNF 2
ChangeHandle VIS

hPos = up

Up3 DNF 1
Up3 VIS

st = u2
hPos = up
randOp = {y}
ransa = {n}
200≤ now− stEV
100≤ now− stGEEV

76 Z Specification of the Landing Gear System

Up3 SP 3
Up3 DNF 1

now > 0
stGEEV = 0

Up3 SP 257
Up3 SP 3

100 > 0
now− stGEEV > 0
100 < now− stGEEV

Up3 SP 321
Up3 SP 257

now > 0
stEV = 0

Up3 SP 335
Up3 SP 321

200 > 0
now− stEV > 0
200 < now− stEV

Up3 SP 336
Up3 SP 321

200 > 0
now− stEV > 0
200 = now− stEV

Up3 SP 324
Up3 SP 257

now > 0
stEV > 0
now > stEV

Up3 SP 347
Up3 SP 324

200 > 0
now− stEV > 0
200 < now− stEV

Up3 SP 348
Up3 SP 324

200 > 0
now− stEV > 0
200 = now− stEV

Up3 SP 6
Up3 DNF 1

now > 0
stGEEV > 0
now > stGEEV

Up3 SP 629
Up3 SP 6

100 > 0
now− stGEEV > 0
100 < now− stGEEV

Up3 SP 693
Up3 SP 629

now > 0
stEV = 0

Up3 SP 707
Up3 SP 693

200 > 0
now− stEV > 0
200 < now− stEV

Up3 SP 708
Up3 SP 693

200 > 0
now− stEV > 0
200 = now− stEV

M. Cristiá 77

Up3 SP 696
Up3 SP 629

now > 0
stEV > 0
now > stEV

Up3 SP 719
Up3 SP 696

200 > 0
now− stEV > 0
200 < now− stEV

Up3 SP 720
Up3 SP 696

200 > 0
now− stEV > 0
200 = now− stEV

Up3 SP 630
Up3 SP 6

100 > 0
now− stGEEV > 0
100 = now− stGEEV

Up3 SP 723
Up3 SP 630

now > 0
stEV = 0

Up3 SP 737
Up3 SP 723

200 > 0
now− stEV > 0
200 < now− stEV

Up3 SP 738
Up3 SP 723

200 > 0
now− stEV > 0
200 = now− stEV

Up3 SP 726
Up3 SP 630

now > 0
stEV > 0
now > stEV

Up3 SP 749
Up3 SP 726

200 > 0
now− stEV > 0
200 < now− stEV

Up3 SP 750
Up3 SP 726

200 > 0
now− stEV > 0
200 = now− stEV

Up3 DNF 2
Up3 VIS

st = u2
hPos = up
randOp = {y}
ransa = {n}
200≤ now− stEV
stGEEV = 0

Up3 DNF 3
Up3 VIS

st = u2
hPos = up
randOp = {y}
ransa 6= {n}

78 Z Specification of the Landing Gear System

Up3 DNF 4
Up3 VIS

st = u2
hPos = down

Up3 DNF 5
Up3 VIS

st 6= u2

Up3 DNF 6
Up3 VIS

randOp 6= {y}

Up3 DNF 7
Up3 VIS

200 > now− stEV

Up3 DNF 8
Up3 VIS

100 > now− stGEEV
stGEEV 6= 0

Up6 DNF 1
Up6 VIS

st = u5
hPos = up
200≤ now− stEV
100≤ now− stDOEV

Up6 SP 3
Up6 DNF 1

now > 0
stEV = 0

Up6 SP 257
Up6 SP 3

200 > 0
now− stEV > 0
200 < now− stEV

Up6 SP 321
Up6 SP 257

now > 0
stDOEV = 0

Up6 SP 335
Up6 SP 321

100 > 0
now− stDOEV > 0
100 < now− stDOEV

Up6 SP 324
Up6 SP 257

now > 0
stDOEV > 0
now > stDOEV

Up6 SP 347
Up6 SP 324

100 > 0
now− stDOEV > 0
100 < now− stDOEV

Up6 SP 348
Up6 SP 324

100 > 0
now− stDOEV > 0
100 = now− stDOEV

M. Cristiá 79

Up6 SP 258
Up6 SP 3

200 > 0
now− stEV > 0
200 = now− stEV

Up6 SP 351
Up6 SP 258

now > 0
stDOEV = 0

Up6 SP 365
Up6 SP 351

100 > 0
now− stDOEV > 0
100 < now− stDOEV

Up6 SP 354
Up6 SP 258

now > 0
stDOEV > 0
now > stDOEV

Up6 SP 377
Up6 SP 354

100 > 0
now− stDOEV > 0
100 < now− stDOEV

Up6 SP 378
Up6 SP 354

100 > 0
now− stDOEV > 0
100 = now− stDOEV

Up6 SP 6
Up6 DNF 1

now > 0
stEV > 0
now > stEV

Up6 SP 629
Up6 SP 6

200 > 0
now− stEV > 0
200 < now− stEV

Up6 SP 693
Up6 SP 629

now > 0
stDOEV = 0

Up6 SP 707
Up6 SP 693

100 > 0
now− stDOEV > 0
100 < now− stDOEV

Up6 SP 696
Up6 SP 629

now > 0
stDOEV > 0
now > stDOEV

Up6 SP 719
Up6 SP 696

100 > 0
now− stDOEV > 0
100 < now− stDOEV

80 Z Specification of the Landing Gear System

Up6 SP 720
Up6 SP 696

100 > 0
now− stDOEV > 0
100 = now− stDOEV

Up6 SP 630
Up6 SP 6

200 > 0
now− stEV > 0
200 = now− stEV

Up6 SP 723
Up6 SP 630

now > 0
stDOEV = 0

Up6 SP 737
Up6 SP 723

100 > 0
now− stDOEV > 0
100 < now− stDOEV

Up6 SP 726
Up6 SP 630

now > 0
stDOEV > 0
now > stDOEV

Up6 SP 749
Up6 SP 726

100 > 0
now− stDOEV > 0
100 < now− stDOEV

Up6 SP 750
Up6 SP 726

100 > 0
now− stDOEV > 0
100 = now− stDOEV

Up6 DNF 2
Up6 VIS

st = u5
hPos = down

Up6 DNF 3
Up6 VIS

st 6= u5

Up6 DNF 4
Up6 VIS

200 > now− stEV

Up6 DNF 5
Up6 VIS

100 > now− stDOEV

Up5 DNF 1
Up5 VIS

st = u4
hPos = up
1000≤ now− spEV

Up5 SP 3
Up5 DNF 1

now > 0
spEV = 0

M. Cristiá 81

Up5 SP 17
Up5 SP 3

1000 > 0
now− spEV > 0
1000 < now− spEV

Up5 SP 18
Up5 SP 3

1000 > 0
now− spEV > 0
1000 = now− spEV

Up5 SP 6
Up5 DNF 1

now > 0
spEV > 0
now > spEV

Up5 SP 29
Up5 SP 6

1000 > 0
now− spEV > 0
1000 < now− spEV

Up5 SP 30
Up5 SP 6

1000 > 0
now− spEV > 0
1000 = now− spEV

Up5 DNF 2
Up5 VIS

st = u4
hPos = down

Up5 DNF 3
Up5 VIS

st 6= u4

Up5 DNF 4
Up5 VIS

1000 > now− spEV

Up8 DNF 1
Up8 VIS

st = u7
hPos = up
1000≤ now− spEV

Up8 SP 3
Up8 DNF 1

now > 0
spEV = 0

Up8 SP 17
Up8 SP 3

1000 > 0
now− spEV > 0
1000 < now− spEV

Up8 SP 18
Up8 SP 3

1000 > 0
now− spEV > 0
1000 = now− spEV

Up8 SP 6
Up8 DNF 1

now > 0
spEV > 0
now > spEV

82 Z Specification of the Landing Gear System

Up8 SP 29
Up8 SP 6

1000 > 0
now− spEV > 0
1000 < now− spEV

Up8 SP 30
Up8 SP 6

1000 > 0
now− spEV > 0
1000 = now− spEV

Up8 DNF 2
Up8 VIS

st = u7
hPos = down

Up8 DNF 3
Up8 VIS

st 6= u7

Up8 DNF 4
Up8 VIS

1000 > now− spEV

Up7 DNF 1
Up7 VIS

st = u6
hPos = up
randCl = {y}
1000≤ now− spEV

Up7 SP 3
Up7 DNF 1

now > 0
spEV = 0

Up7 SP 17
Up7 SP 3

1000 > 0
now− spEV > 0
1000 < now− spEV

Up7 SP 18
Up7 SP 3

1000 > 0
now− spEV > 0
1000 = now− spEV

Up7 SP 6
Up7 DNF 1

now > 0
spEV > 0
now > spEV

Up7 SP 29
Up7 SP 6

1000 > 0
now− spEV > 0
1000 < now− spEV

Up7 SP 30
Up7 SP 6

1000 > 0
now− spEV > 0
1000 = now− spEV

Up7 DNF 2
Up7 VIS

st = u6
hPos = down

M. Cristiá 83

Up7 DNF 3
Up7 VIS

st 6= u6

Up7 DNF 4
Up7 VIS

randCl 6= {y}

Up7 DNF 5
Up7 VIS

1000 > now− spEV

GearsManeuvering DNF 1
GearsManeuvering VIS

rangExt 6= {y}
rangRec 6= {y}

GearsManeuvering DNF 2
GearsManeuvering VIS

randCl 6= {y}

GearsManeuvering DNF 3
GearsManeuvering VIS

rangExt = {y}
randCl = {y}

GearsManeuvering DNF 4
GearsManeuvering VIS

rangRec = {y}
randCl = {y}

Down5 DNF 1
Down5 VIS

st = d4
hPos = down
1000≤ now− spEV

Down5 SP 3
Down5 DNF 1

now > 0
spEV = 0

Down5 SP 17
Down5 SP 3

1000 > 0
now− spEV > 0
1000 < now− spEV

Down5 SP 18
Down5 SP 3

1000 > 0
now− spEV > 0
1000 = now− spEV

Down5 SP 6
Down5 DNF 1

now > 0
spEV > 0
now > spEV

Down5 SP 29
Down5 SP 6

1000 > 0
now− spEV > 0
1000 < now− spEV

Down5 SP 30
Down5 SP 6

1000 > 0
now− spEV > 0
1000 = now− spEV

84 Z Specification of the Landing Gear System

Down5 DNF 2
Down5 VIS

hPos = up
st = d4

Down5 DNF 3
Down5 VIS

st 6= d4

Down5 DNF 4
Down5 VIS

1000 > now− spEV

Down4 DNF 1
Down4 VIS

st = d3
hPos = down
rangExt = {y}
1000≤ now− spEV

Down4 SP 3
Down4 DNF 1

now > 0
spEV = 0

Down4 SP 17
Down4 SP 3

1000 > 0
now− spEV > 0
1000 < now− spEV

Down4 SP 18
Down4 SP 3

1000 > 0
now− spEV > 0
1000 = now− spEV

Down4 SP 6
Down4 DNF 1

now > 0
spEV > 0
now > spEV

Down4 SP 29
Down4 SP 6

1000 > 0
now− spEV > 0
1000 < now− spEV

Down4 SP 30
Down4 SP 6

1000 > 0
now− spEV > 0
1000 = now− spEV

Down4 DNF 2
Down4 VIS

st = d3
hPos = down
rangExt = {y}
spEV = 0

Down4 DNF 3
Down4 VIS

hPos = up
st = d3

Down4 DNF 4
Down4 VIS

st 6= d3

M. Cristiá 85

Down4 DNF 5
Down4 VIS

rangExt 6= {y}

Down4 DNF 6
Down4 VIS

1000 > now− spEV
spEV 6= 0

HydraulicCircuitM DNF 1
HydraulicCircuitM VIS

hc = n
2000≤ now− stGEV
stGEV 6= 0

HydraulicCircuitM SP 36
HydraulicCircuitM DNF 1

now > 0
stGEV > 0
now > stGEV

HydraulicCircuitM SP 59
HydraulicCircuitM SP 36

2000 > 0
now− stGEV > 0
2000 < now− stGEV

HydraulicCircuitM SP 60
HydraulicCircuitM SP 36

2000 > 0
now− stGEV > 0
2000 = now− stGEV

HydraulicCircuitM DNF 2
HydraulicCircuitM VIS

hc = y
10000≤ now− spGEV
spGEV 6= 0

HydraulicCircuitM SP 6
HydraulicCircuitM DNF 2

now > 0
spGEV > 0
now > spGEV

HydraulicCircuitM SP 29
HydraulicCircuitM SP 6

10000 > 0
now− spGEV > 0
10000 < now− spGEV

HydraulicCircuitM SP 30
HydraulicCircuitM SP 6

10000 > 0
now− spGEV > 0
10000 = now− spGEV

HydraulicCircuitM DNF 3
HydraulicCircuitM VIS

hc 6= n

HydraulicCircuitM DNF 4
HydraulicCircuitM VIS

2000 > now− stGEV

HydraulicCircuitM DNF 5
HydraulicCircuitM VIS

stGEV = 0

HydraulicCircuitM DNF 6
HydraulicCircuitM VIS

hc 6= y

86 Z Specification of the Landing Gear System

HydraulicCircuitM DNF 7
HydraulicCircuitM VIS

10000 > now− spGEV

HydraulicCircuitM DNF 8
HydraulicCircuitM VIS

spGEV = 0

Down3 DNF 1
Down3 VIS

st = d2
hPos = down
randOp = {y}
200≤ now− stEV
100≤ now− stGREV

Down3 SP 3
Down3 DNF 1

now > 0
stEV = 0

Down3 SP 257
Down3 SP 3

200 > 0
now− stEV > 0
200 < now− stEV

Down3 SP 321
Down3 SP 257

now > 0
stGREV = 0

Down3 SP 335
Down3 SP 321

100 > 0
now− stGREV > 0
100 < now− stGREV

Down3 SP 324
Down3 SP 257

now > 0
stGREV > 0
now > stGREV

Down3 SP 347
Down3 SP 324

100 > 0
now− stGREV > 0
100 < now− stGREV

Down3 SP 348
Down3 SP 324

100 > 0
now− stGREV > 0
100 = now− stGREV

Down3 SP 258
Down3 SP 3

200 > 0
now− stEV > 0
200 = now− stEV

Down3 SP 351
Down3 SP 258

now > 0
stGREV = 0

Down3 SP 365
Down3 SP 351

100 > 0
now− stGREV > 0
100 < now− stGREV

M. Cristiá 87

Down3 SP 354
Down3 SP 258

now > 0
stGREV > 0
now > stGREV

Down3 SP 377
Down3 SP 354

100 > 0
now− stGREV > 0
100 < now− stGREV

Down3 SP 378
Down3 SP 354

100 > 0
now− stGREV > 0
100 = now− stGREV

Down3 SP 6
Down3 DNF 1

now > 0
stEV > 0
now > stEV

Down3 SP 629
Down3 SP 6

200 > 0
now− stEV > 0
200 < now− stEV

Down3 SP 693
Down3 SP 629

now > 0
stGREV = 0

Down3 SP 707
Down3 SP 693

100 > 0
now− stGREV > 0
100 < now− stGREV

Down3 SP 696
Down3 SP 629

now > 0
stGREV > 0
now > stGREV

Down3 SP 719
Down3 SP 696

100 > 0
now− stGREV > 0
100 < now− stGREV

Down3 SP 720
Down3 SP 696

100 > 0
now− stGREV > 0
100 = now− stGREV

Down3 SP 630
Down3 SP 6

200 > 0
now− stEV > 0
200 = now− stEV

Down3 SP 723
Down3 SP 630

now > 0
stGREV = 0

88 Z Specification of the Landing Gear System

Down3 SP 737
Down3 SP 723

100 > 0
now− stGREV > 0
100 < now− stGREV

Down3 SP 726
Down3 SP 630

now > 0
stGREV > 0
now > stGREV

Down3 SP 749
Down3 SP 726

100 > 0
now− stGREV > 0
100 < now− stGREV

Down3 SP 750
Down3 SP 726

100 > 0
now− stGREV > 0
100 = now− stGREV

Down3 DNF 2
Down3 VIS

st = d2
hPos = down
randOp = {y}
200≤ now− stEV
stGREV = 0

Down3 DNF 3
Down3 VIS

hPos = up
st = d2

Down3 DNF 4
Down3 VIS

st = d2

Down3 DNF 5
Down3 VIS

randOp 6= {y}

Down3 DNF 6
Down3 VIS

200 > now− stEV

Down3 DNF 7
Down3 VIS

100 > now− stGREV
stGREV 6= 0

Down2 DNF 1
Down2 VIS

st = d1
hPos = down
200≤ now− stEV
100≤ now− stDCEV

Down2 SP 3
Down2 DNF 1

now > 0
stEV = 0

Down2 SP 257
Down2 SP 3

200 > 0
now− stEV > 0
200 < now− stEV

M. Cristiá 89

Down2 SP 321
Down2 SP 257

now > 0
stDCEV = 0

Down2 SP 335
Down2 SP 321

100 > 0
now− stDCEV > 0
100 < now− stDCEV

Down2 SP 324
Down2 SP 257

now > 0
stDCEV > 0
now > stDCEV

Down2 SP 347
Down2 SP 324

100 > 0
now− stDCEV > 0
100 < now− stDCEV

Down2 SP 348
Down2 SP 324

100 > 0
now− stDCEV > 0
100 = now− stDCEV

Down2 SP 258
Down2 SP 3

200 > 0
now− stEV > 0
200 = now− stEV

Down2 SP 351
Down2 SP 258

now > 0
stDCEV = 0

Down2 SP 365
Down2 SP 351

100 > 0
now− stDCEV > 0
100 < now− stDCEV

Down2 SP 354
Down2 SP 258

now > 0
stDCEV > 0
now > stDCEV

Down2 SP 377
Down2 SP 354

100 > 0
now− stDCEV > 0
100 < now− stDCEV

Down2 SP 378
Down2 SP 354

100 > 0
now− stDCEV > 0
100 = now− stDCEV

Down2 SP 6
Down2 DNF 1

now > 0
stEV > 0
now > stEV

90 Z Specification of the Landing Gear System

Down2 SP 629
Down2 SP 6

200 > 0
now− stEV > 0
200 < now− stEV

Down2 SP 693
Down2 SP 629

now > 0
stDCEV = 0

Down2 SP 707
Down2 SP 693

100 > 0
now− stDCEV > 0
100 < now− stDCEV

Down2 SP 696
Down2 SP 629

now > 0
stDCEV > 0
now > stDCEV

Down2 SP 719
Down2 SP 696

100 > 0
now− stDCEV > 0
100 < now− stDCEV

Down2 SP 720
Down2 SP 696

100 > 0
now− stDCEV > 0
100 = now− stDCEV

Down2 SP 630
Down2 SP 6

200 > 0
now− stEV > 0
200 = now− stEV

Down2 SP 723
Down2 SP 630

now > 0
stDCEV = 0

Down2 SP 737
Down2 SP 723

100 > 0
now− stDCEV > 0
100 < now− stDCEV

Down2 SP 726
Down2 SP 630

now > 0
stDCEV > 0
now > stDCEV

Down2 SP 749
Down2 SP 726

100 > 0
now− stDCEV > 0
100 < now− stDCEV

Down2 SP 750
Down2 SP 726

100 > 0
now− stDCEV > 0
100 = now− stDCEV

M. Cristiá 91

Down2 DNF 2
Down2 VIS

st = d1
hPos = down
200≤ now− stEV
stDCEV = 0

Down2 DNF 3
Down2 VIS

hPos = up
st = d1

Down2 DNF 4
Down2 VIS

st 6= d1

Down2 DNF 5
Down2 VIS

200 > now− stEV

Down2 DNF 6
Down2 VIS

100 > now− stDCEV
stDCEV 6= 0

GearsLockedDown DNF 1
GearsLockedDown VIS

rangExt = {y}

GearsLockedDown DNF 2
GearsLockedDown VIS

rangExt 6= {y}

Down8 DNF 1
Down8 VIS

st = d7
hPos = down
1000≤ now− spEV

Down8 SP 3
Down8 DNF 1

now > 0
spEV = 0

Down8 SP 17
Down8 SP 3

1000 > 0
now− spEV > 0
1000 < now− spEV

Down8 SP 18
Down8 SP 3

1000 > 0
now− spEV > 0
1000 = now− spEV

Down8 SP 6
Down8 DNF 1

now > 0
spEV > 0
now > spEV

Down8 SP 29
Down8 SP 6

1000 > 0
now− spEV > 0
1000 < now− spEV

92 Z Specification of the Landing Gear System

Down8 SP 30
Down8 SP 6

1000 > 0
now− spEV > 0
1000 = now− spEV

Down8 DNF 2
Down8 VIS

hPos = up
st = d7

Down8 DNF 3
Down8 VIS

st 6= d7

Down8 DNF 4
Down8 VIS

1000 > now− spEV

ReadHydraulicCircuit DNF 2
ReadHydraulicCircuit VIS

#(v?B{y})≤ #(v?B{n})
dom(v?B{n}) = SENS

ReadHydraulicCircuit DNF 3
ReadHydraulicCircuit VIS

dom(v?B{y}) = SENS
#(v?B{y})> #(v?B{n})

ReadHydraulicCircuit DNF 6
ReadHydraulicCircuit VIS

sHC = SENS
dom(v?B{y})⊂ SENS
#(v?B{y})> #(v?B{n})

ReadHydraulicCircuit DNF 7
ReadHydraulicCircuit VIS

sHC = SENS
#(v?B{y})≤ #(v?B{n})
dom(v?B{n})⊂ SENS

ReadHydraulicCircuit DNF 8
ReadHydraulicCircuit VIS

sHC = SENS
dom(v?B{y})⊂ SENS
dom(v?B{n})⊂ SENS

ReadHydraulicCircuit DNF 10
ReadHydraulicCircuit VIS

sHC ⊂ SENS
dom(sHCC v?B{y}) = sHC
#(sHCC v?B{y})> #(sHCC v?B{n})

ReadHydraulicCircuit DNF 11
ReadHydraulicCircuit VIS

sHC ⊂ SENS
#(sHCC v?B{y})≤ #(sHCC v?B{n})
dom(sHCC v?B{n}) = sHC

ReadHydraulicCircuit DNF 12
ReadHydraulicCircuit VIS

sHC ⊂ SENS
dom(sHCC v?B{y}) = sHC
dom(sHCC v?B{n}) = sHC

ReadDoorsClosing DNF 2
ReadDoorsClosing VIS

#(v?B{y})≤ #(v?B{n})
dom(v?B{n}) = SENS

ReadDoorsClosing FT 4
ReadDoorsClosing DNF 2

g? = forward

M. Cristiá 93

ReadDoorsClosing FT 5
ReadDoorsClosing DNF 2

g? = left

ReadDoorsClosing FT 6
ReadDoorsClosing DNF 2

g? = right

ReadDoorsClosing DNF 3
ReadDoorsClosing VIS

dom(v?B{y}) = SENS
#(v?B{y})> #(v?B{n})

ReadDoorsClosing FT 7
ReadDoorsClosing DNF 3

g? = forward

ReadDoorsClosing FT 8
ReadDoorsClosing DNF 3

g? = left

ReadDoorsClosing FT 9
ReadDoorsClosing DNF 3

g? = right

ReadDoorsClosing DNF 6
ReadDoorsClosing VIS

sDClg? = SENS
dom(v?B{y})⊂ SENS
#(v?B{y})> #(v?B{n})

ReadDoorsClosing FT 13
ReadDoorsClosing DNF 6

g? = forward

ReadDoorsClosing FT 14
ReadDoorsClosing DNF 6

g? = left

ReadDoorsClosing FT 15
ReadDoorsClosing DNF 6

g? = right

ReadDoorsClosing DNF 7
ReadDoorsClosing VIS

sDClg? = SENS
#(v?B{y})≤ #(v?B{n})
dom(v?B{n})⊂ SENS

ReadDoorsClosing FT 16
ReadDoorsClosing DNF 7

g? = forward

ReadDoorsClosing FT 17
ReadDoorsClosing DNF 7

g? = left

ReadDoorsClosing FT 18
ReadDoorsClosing DNF 7

g? = right

ReadDoorsClosing DNF 8
ReadDoorsClosing VIS

sDClg? = SENS
dom(v?B{y})⊂ SENS
dom(v?B{n})⊂ SENS

ReadDoorsClosing FT 19
ReadDoorsClosing DNF 8

g? = forward

94 Z Specification of the Landing Gear System

ReadDoorsClosing FT 20
ReadDoorsClosing DNF 8

g? = left

ReadDoorsClosing FT 21
ReadDoorsClosing DNF 8

g? = right

ReadDoorsClosing DNF 10
ReadDoorsClosing VIS

sDClg?⊂ SENS
dom(sDClg?C v?B{y}) = sDClg?
#(sDClg?C v?B{y})> #(sDClg?C v?B{n})

ReadDoorsClosing FT 25
ReadDoorsClosing DNF 10

g? = forward

ReadDoorsClosing FT 26
ReadDoorsClosing DNF 10

g? = left

ReadDoorsClosing FT 27
ReadDoorsClosing DNF 10

g? = right

ReadDoorsClosing DNF 11
ReadDoorsClosing VIS

sDClg?⊂ SENS
#(sDClg?C v?B{y})≤ #(sDClg?C v?B{n})
dom(sDClg?C v?B{n}) = sDClg?

ReadDoorsClosing FT 28
ReadDoorsClosing DNF 11

g? = forward

ReadDoorsClosing FT 29
ReadDoorsClosing DNF 11

g? = left

ReadDoorsClosing FT 30
ReadDoorsClosing DNF 11

g? = right

ReadDoorsClosing DNF 12
ReadDoorsClosing VIS

sDClg?⊂ SENS
dom(sDClg?C v?B{y}) = sDClg?
dom(sDClg?C v?B{n}) = sDClg?

ReadDoorsClosing FT 31
ReadDoorsClosing DNF 12

g? = forward

ReadDoorsClosing FT 32
ReadDoorsClosing DNF 12

g? = left

ReadDoorsClosing FT 33
ReadDoorsClosing DNF 12

g? = right

Down7 DNF 1
Down7 VIS

st = d6
hPos = down
randCl = {y}
1000≤ now− spEV

M. Cristiá 95

Down7 SP 3
Down7 DNF 1

now > 0
spEV = 0

Down7 SP 17
Down7 SP 3

1000 > 0
now− spEV > 0
1000 < now− spEV

Down7 SP 18
Down7 SP 3

1000 > 0
now− spEV > 0
1000 = now− spEV

Down7 SP 6
Down7 DNF 1

now > 0
spEV > 0
now > spEV

Down7 SP 29
Down7 SP 6

1000 > 0
now− spEV > 0
1000 < now− spEV

Down7 SP 30
Down7 SP 6

1000 > 0
now− spEV > 0
1000 = now− spEV

Down7 DNF 2
Down7 VIS

hPos = up
st = d6

Down7 DNF 3
Down7 VIS

st 6= d6

Down7 DNF 4
Down7 VIS

randCl 6= {y}

Down7 DNF 5
Down7 VIS

1000 > now− spEV

Down6 DNF 1
Down6 VIS

st = d5
hPos = down
200≤ now− stEV
100≤ now− stDOEV

Down6 SP 3
Down6 DNF 1

now > 0
stEV = 0

Down6 SP 257
Down6 SP 3

200 > 0
now− stEV > 0
200 < now− stEV

96 Z Specification of the Landing Gear System

Down6 SP 321
Down6 SP 257

now > 0
stDOEV = 0

Down6 SP 335
Down6 SP 321

100 > 0
now− stDOEV > 0
100 < now− stDOEV

Down6 SP 324
Down6 SP 257

now > 0
stDOEV > 0
now > stDOEV

Down6 SP 347
Down6 SP 324

100 > 0
now− stDOEV > 0
100 < now− stDOEV

Down6 SP 348
Down6 SP 324

100 > 0
now− stDOEV > 0
100 = now− stDOEV

Down6 SP 258
Down6 SP 3

200 > 0
now− stEV > 0
200 = now− stEV

Down6 SP 351
Down6 SP 258

now > 0
stDOEV = 0

Down6 SP 365
Down6 SP 351

100 > 0
now− stDOEV > 0
100 < now− stDOEV

Down6 SP 354
Down6 SP 258

now > 0
stDOEV > 0
now > stDOEV

Down6 SP 377
Down6 SP 354

100 > 0
now− stDOEV > 0
100 < now− stDOEV

Down6 SP 378
Down6 SP 354

100 > 0
now− stDOEV > 0
100 = now− stDOEV

Down6 SP 6
Down6 DNF 1

now > 0
stEV > 0
now > stEV

M. Cristiá 97

Down6 SP 629
Down6 SP 6

200 > 0
now− stEV > 0
200 < now− stEV

Down6 SP 693
Down6 SP 629

now > 0
stDOEV = 0

Down6 SP 707
Down6 SP 693

100 > 0
now− stDOEV > 0
100 < now− stDOEV

Down6 SP 696
Down6 SP 629

now > 0
stDOEV > 0
now > stDOEV

Down6 SP 719
Down6 SP 696

100 > 0
now− stDOEV > 0
100 < now− stDOEV

Down6 SP 720
Down6 SP 696

100 > 0
now− stDOEV > 0
100 = now− stDOEV

Down6 SP 630
Down6 SP 6

200 > 0
now− stEV > 0
200 = now− stEV

Down6 SP 723
Down6 SP 630

now > 0
stDOEV = 0

Down6 SP 737
Down6 SP 723

100 > 0
now− stDOEV > 0
100 < now− stDOEV

Down6 SP 726
Down6 SP 630

now > 0
stDOEV > 0
now > stDOEV

Down6 SP 749
Down6 SP 726

100 > 0
now− stDOEV > 0
100 < now− stDOEV

Down6 SP 750
Down6 SP 726

100 > 0
now− stDOEV > 0
100 = now− stDOEV

Down6 DNF 2
Down6 VIS

hPos = up
st = d5

98 Z Specification of the Landing Gear System

Down6 DNF 3
Down6 VIS

st 6= d5

Down6 DNF 4
Down6 VIS

200 > now− stEV

Down6 DNF 5
Down6 VIS

100 > now− stDOEV

GearsMotionM DNF 1
GearsMotionM VIS

rangRec 6= {n}
7000≤ now− stGREV

GearsMotionM SP 33
GearsMotionM DNF 1

now > 0
stGREV = 0

GearsMotionM SP 47
GearsMotionM SP 33

7000 > 0
now− stGREV > 0
7000 < now− stGREV

GearsMotionM SP 48
GearsMotionM SP 33

7000 > 0
now− stGREV > 0
7000 = now− stGREV

GearsMotionM SP 36
GearsMotionM DNF 1

now > 0
stGREV > 0
now > stGREV

GearsMotionM SP 59
GearsMotionM SP 36

7000 > 0
now− stGREV > 0
7000 < now− stGREV

GearsMotionM SP 60
GearsMotionM SP 36

7000 > 0
now− stGREV > 0
7000 = now− stGREV

GearsMotionM DNF 2
GearsMotionM VIS

rangRec 6= {y}
10000≤ now− stGREV

GearsMotionM SP 3
GearsMotionM DNF 2

now > 0
stGREV = 0

GearsMotionM SP 17
GearsMotionM SP 3

10000 > 0
now− stGREV > 0
10000 < now− stGREV

GearsMotionM SP 18
GearsMotionM SP 3

10000 > 0
now− stGREV > 0
10000 = now− stGREV

M. Cristiá 99

GearsMotionM SP 6
GearsMotionM DNF 2

now > 0
stGREV > 0
now > stGREV

GearsMotionM SP 29
GearsMotionM SP 6

10000 > 0
now− stGREV > 0
10000 < now− stGREV

GearsMotionM SP 30
GearsMotionM SP 6

10000 > 0
now− stGREV > 0
10000 = now− stGREV

GearsMotionM DNF 3
GearsMotionM VIS

rangExt 6= {n}
7000≤ now− stGEEV

GearsMotionM SP 93
GearsMotionM DNF 3

now > 0
stGEEV = 0

GearsMotionM SP 107
GearsMotionM SP 93

7000 > 0
now− stGEEV > 0
7000 < now− stGEEV

GearsMotionM SP 108
GearsMotionM SP 93

7000 > 0
now− stGEEV > 0
7000 = now− stGEEV

GearsMotionM SP 96
GearsMotionM DNF 3

now > 0
stGEEV > 0
now > stGEEV

GearsMotionM SP 119
GearsMotionM SP 96

7000 > 0
now− stGEEV > 0
7000 < now− stGEEV

GearsMotionM SP 120
GearsMotionM SP 96

7000 > 0
now− stGEEV > 0
7000 = now− stGEEV

GearsMotionM DNF 4
GearsMotionM VIS

rangExt 6= {y}
10000≤ now− stGEEV

GearsMotionM SP 63
GearsMotionM DNF 4

now > 0
stGEEV = 0

GearsMotionM SP 77
GearsMotionM SP 63

10000 > 0
now− stGEEV > 0
10000 < now− stGEEV

100 Z Specification of the Landing Gear System

GearsMotionM SP 78
GearsMotionM SP 63

10000 > 0
now− stGEEV > 0
10000 = now− stGEEV

GearsMotionM SP 66
GearsMotionM DNF 4

now > 0
stGEEV > 0
now > stGEEV

GearsMotionM SP 89
GearsMotionM SP 66

10000 > 0
now− stGEEV > 0
10000 < now− stGEEV

GearsMotionM SP 90
GearsMotionM SP 66

10000 > 0
now− stGEEV > 0
10000 = now− stGEEV

GearsMotionM DNF 5
GearsMotionM VIS

rangRec = {n}

GearsMotionM DNF 6
GearsMotionM VIS

7000 > now− stGREV

GearsMotionM DNF 7
GearsMotionM VIS

rangRec = {y}

GearsMotionM DNF 8
GearsMotionM VIS

10000 > now− stGREV

GearsMotionM DNF 9
GearsMotionM VIS

rangExt = {n}

GearsMotionM DNF 10
GearsMotionM VIS

7000 > now− stGEEV

GearsMotionM DNF 11
GearsMotionM VIS

rangExt = {y}

GearsMotionM DNF 12
GearsMotionM VIS

10000 > now− stGEEV

DoorsMotionM DNF 1
DoorsMotionM VIS

randCl 6= {n}
7000≤ now− stDOEV

DoorsMotionM SP 63
DoorsMotionM DNF 1

now > 0
stDOEV = 0

DoorsMotionM SP 77
DoorsMotionM SP 63

7000 > 0
now− stDOEV > 0
7000 < now− stDOEV

M. Cristiá 101

DoorsMotionM SP 78
DoorsMotionM SP 63

7000 > 0
now− stDOEV > 0
7000 = now− stDOEV

DoorsMotionM SP 66
DoorsMotionM DNF 1

now > 0
stDOEV > 0
now > stDOEV

DoorsMotionM SP 89
DoorsMotionM SP 66

7000 > 0
now− stDOEV > 0
7000 < now− stDOEV

DoorsMotionM SP 90
DoorsMotionM SP 66

7000 > 0
now− stDOEV > 0
7000 = now− stDOEV

DoorsMotionM DNF 2
DoorsMotionM VIS

randOp 6= {y}
7000≤ now− stDOEV

DoorsMotionM SP 33
DoorsMotionM DNF 2

now > 0
stDOEV = 0

DoorsMotionM SP 47
DoorsMotionM SP 33

7000 > 0
now− stDOEV > 0
7000 < now− stDOEV

DoorsMotionM SP 48
DoorsMotionM SP 33

7000 > 0
now− stDOEV > 0
7000 = now− stDOEV

DoorsMotionM SP 36
DoorsMotionM DNF 2

now > 0
stDOEV > 0
now > stDOEV

DoorsMotionM SP 59
DoorsMotionM SP 36

7000 > 0
now− stDOEV > 0
7000 < now− stDOEV

DoorsMotionM SP 60
DoorsMotionM SP 36

7000 > 0
now− stDOEV > 0
7000 = now− stDOEV

DoorsMotionM DNF 3
DoorsMotionM VIS

randOp 6= {n}
7000≤ now− stDCEV

DoorsMotionM SP 3
DoorsMotionM DNF 3

now > 0
stDCEV = 0

102 Z Specification of the Landing Gear System

DoorsMotionM SP 17
DoorsMotionM SP 3

7000 > 0
now− stDCEV > 0
7000 < now− stDCEV

DoorsMotionM SP 18
DoorsMotionM SP 3

7000 > 0
now− stDCEV > 0
7000 = now− stDCEV

DoorsMotionM SP 6
DoorsMotionM DNF 3

now > 0
stDCEV > 0
now > stDCEV

DoorsMotionM SP 29
DoorsMotionM SP 6

7000 > 0
now− stDCEV > 0
7000 < now− stDCEV

DoorsMotionM SP 30
DoorsMotionM SP 6

7000 > 0
now− stDCEV > 0
7000 = now− stDCEV

DoorsMotionM DNF 4
DoorsMotionM VIS

randCl 6= {y}
7000≤ now− stDCEV

DoorsMotionM SP 93
DoorsMotionM DNF 4

now > 0
stDCEV = 0

DoorsMotionM SP 107
DoorsMotionM SP 93

7000 > 0
now− stDCEV > 0
7000 < now− stDCEV

DoorsMotionM SP 108
DoorsMotionM SP 93

7000 > 0
now− stDCEV > 0
7000 = now− stDCEV

DoorsMotionM SP 96
DoorsMotionM DNF 4

now > 0
stDCEV > 0
now > stDCEV

DoorsMotionM SP 119
DoorsMotionM SP 96

7000 > 0
now− stDCEV > 0
7000 < now− stDCEV

DoorsMotionM SP 120
DoorsMotionM SP 96

7000 > 0
now− stDCEV > 0
7000 = now− stDCEV

DoorsMotionM DNF 5
DoorsMotionM VIS

randCl = {n}

M. Cristiá 103

DoorsMotionM DNF 6
DoorsMotionM VIS

7000 > now− stDOEV

DoorsMotionM DNF 7
DoorsMotionM VIS

randOp = {y}

DoorsMotionM DNF 8
DoorsMotionM VIS

randOp = {n}

DoorsMotionM DNF 9
DoorsMotionM VIS

7000 > now− stDCEV

DoorsMotionM DNF 10
DoorsMotionM VIS

randCl = {y}

ReadShockAbsorbers DNF 2
ReadShockAbsorbers VIS

#(v?B{y})≤ #(v?B{n})
dom(v?B{n}) = SENS

ReadShockAbsorbers FT 4
ReadShockAbsorbers DNF 2

g? = forward

ReadShockAbsorbers FT 5
ReadShockAbsorbers DNF 2

g? = left

ReadShockAbsorbers FT 6
ReadShockAbsorbers DNF 2

g? = right

ReadShockAbsorbers DNF 3
ReadShockAbsorbers VIS

dom(v?B{y}) = SENS
#(v?B{y})> #(v?B{n})

ReadShockAbsorbers FT 7
ReadShockAbsorbers DNF 3

g? = forward

ReadShockAbsorbers FT 8
ReadShockAbsorbers DNF 3

g? = left

ReadShockAbsorbers FT 9
ReadShockAbsorbers DNF 3

g? = right

ReadShockAbsorbers DNF 6
ReadShockAbsorbers VIS

sSAg? = SENS
dom(v?B{y})⊂ SENS
#(v?B{y})> #(v?B{n})

ReadShockAbsorbers FT 13
ReadShockAbsorbers DNF 6

g? = forward

ReadShockAbsorbers FT 14
ReadShockAbsorbers DNF 6

g? = left

104 Z Specification of the Landing Gear System

ReadShockAbsorbers FT 15
ReadShockAbsorbers DNF 6

g? = right

ReadShockAbsorbers DNF 7
ReadShockAbsorbers VIS

sSAg? = SENS
#(v?B{y})≤ #(v?B{n})
dom(v?B{n})⊂ SENS

ReadShockAbsorbers FT 16
ReadShockAbsorbers DNF 7

g? = forward

ReadShockAbsorbers FT 17
ReadShockAbsorbers DNF 7

g? = left

ReadShockAbsorbers FT 18
ReadShockAbsorbers DNF 7

g? = right

ReadShockAbsorbers DNF 8
ReadShockAbsorbers VIS

sSAg? = SENS
dom(v?B{y})⊂ SENS
dom(v?B{n})⊂ SENS

ReadShockAbsorbers FT 19
ReadShockAbsorbers DNF 8

g? = forward

ReadShockAbsorbers FT 20
ReadShockAbsorbers DNF 8

g? = left

ReadShockAbsorbers FT 21
ReadShockAbsorbers DNF 8

g? = right

ReadShockAbsorbers DNF 10
ReadShockAbsorbers VIS

sSAg?⊂ SENS
dom(sSAg?C v?B{y}) = sSAg?
#(sSAg?C v?B{y})> #(sSAg?C v?B{n})

ReadShockAbsorbers FT 25
ReadShockAbsorbers DNF 10

g? = forward

ReadShockAbsorbers FT 26
ReadShockAbsorbers DNF 10

g? = left

ReadShockAbsorbers FT 27
ReadShockAbsorbers DNF 10

g? = right

ReadShockAbsorbers DNF 11
ReadShockAbsorbers VIS

sSAg?⊂ SENS
#(sSAg?C v?B{y})≤ #(sSAg?C v?B{n})
dom(sSAg?C v?B{n}) = sSAg?

ReadShockAbsorbers FT 28
ReadShockAbsorbers DNF 11

g? = forward

M. Cristiá 105

ReadShockAbsorbers FT 29
ReadShockAbsorbers DNF 11

g? = left

ReadShockAbsorbers FT 30
ReadShockAbsorbers DNF 11

g? = right

ReadShockAbsorbers DNF 12
ReadShockAbsorbers VIS

sSAg?⊂ SENS
dom(sSAg?C v?B{y}) = sSAg?
dom(sSAg?C v?B{n}) = sSAg?

ReadShockAbsorbers FT 31
ReadShockAbsorbers DNF 12

g? = forward

ReadShockAbsorbers FT 32
ReadShockAbsorbers DNF 12

g? = left

ReadShockAbsorbers FT 33
ReadShockAbsorbers DNF 12

g? = right

AnalogicalSwitchM DNF 1
AnalogicalSwitchM VIS

as = y
1000≤ now− lHPCh
lHPCh 6= 0

AnalogicalSwitchM SP 6
AnalogicalSwitchM DNF 1

now > 0
lHPCh > 0
now > lHPCh

AnalogicalSwitchM SP 29
AnalogicalSwitchM SP 6

1000 > 0
now− lHPCh > 0
1000 < now− lHPCh

AnalogicalSwitchM SP 30
AnalogicalSwitchM SP 6

1000 > 0
now− lHPCh > 0
1000 = now− lHPCh

AnalogicalSwitchM DNF 2
AnalogicalSwitchM VIS

as = n
1500≤ now− l20
l20 6= 0

AnalogicalSwitchM SP 36
AnalogicalSwitchM DNF 2

now > 0
l20 > 0
now > l20

AnalogicalSwitchM SP 59
AnalogicalSwitchM SP 36

1500 > 0
now− l20 > 0
1500 < now− l20

AnalogicalSwitchM SP 60
AnalogicalSwitchM SP 36

1500 > 0
now− l20 > 0
1500 = now− l20

106 Z Specification of the Landing Gear System

AnalogicalSwitchM DNF 3
AnalogicalSwitchM VIS

as 6= y

AnalogicalSwitchM DNF 4
AnalogicalSwitchM VIS

1000 > now− lHPCh

AnalogicalSwitchM DNF 5
AnalogicalSwitchM VIS

lHPCh = 0

AnalogicalSwitchM DNF 6
AnalogicalSwitchM VIS

as 6= n

AnalogicalSwitchM DNF 7
AnalogicalSwitchM VIS

1500 > now− l20

AnalogicalSwitchM DNF 8
AnalogicalSwitchM VIS

l20 = 0

Valid DNF 1
Valid VIS

#(i?B{y})> #(i?B{n})

Valid SP 3
Valid DNF 1

i? 6= {}
{y}= ran i?

Valid SP 26
Valid SP 3

i? 6= {}
{n} 6= {}
{n}∩ ran i? = {}

Valid SP 4
Valid DNF 1

i? 6= {}
{y} 6= {}
{y} ⊂ ran i?

Valid SP 32
Valid SP 4

i? 6= {}
{n} 6= {}
{n} ⊂ ran i?

Valid SP 33
Valid SP 4

i? 6= {}
{n} 6= {}
{n}∩ ran i? = {}

Valid SP 5
Valid DNF 1

i? 6= {}
{y} 6= {}
{y}∩ ran i? = {}

Valid SP 38
Valid SP 5

i? 6= {}
{n}= ran i?

M. Cristiá 107

Valid SP 39
Valid SP 5

i? 6= {}
{n} 6= {}
{n} ⊂ ran i?

Valid SP 40
Valid SP 5

i? 6= {}
{n} 6= {}
{n}∩ ran i? = {}

Valid DNF 2
Valid VIS

#(i?B{y})≤ #(i?B{n})

Valid SP 57
Valid DNF 2

i? = {}

Valid SP 64
Valid SP 57

i? = {}

Valid SP 59
Valid DNF 2

i? 6= {}
{y}= ran i?

Valid SP 82
Valid SP 59

i? 6= {}
{n} 6= {}
{n}∩ ran i? = {}

Valid SP 60
Valid DNF 2

i? 6= {}
{y} 6= {}
{y} ⊂ ran i?

Valid SP 88
Valid SP 60

i? 6= {}
{n} 6= {}
{n} ⊂ ran i?

Valid SP 89
Valid SP 60

i? 6= {}
{n} 6= {}
{n}∩ ran i? = {}

Valid SP 61
Valid DNF 2

i? 6= {}
{y} 6= {}
{y}∩ ran i? = {}

Valid SP 94
Valid SP 61

i? 6= {}
{n}= ran i?

Valid SP 95
Valid SP 61

i? 6= {}
{n} 6= {}
{n} ⊂ ran i?

108 Z Specification of the Landing Gear System

Valid SP 96
Valid SP 61

i? 6= {}
{n} 6= {}
{n}∩ ran i? = {}

Down1 DNF 1
Down1 VIS

st = d0
hPos = down
200≤ now− stEV

Down1 SP 3
Down1 DNF 1

now > 0
stEV = 0

Down1 SP 17
Down1 SP 3

200 > 0
now− stEV > 0
200 < now− stEV

Down1 SP 18
Down1 SP 3

200 > 0
now− stEV > 0
200 = now− stEV

Down1 SP 6
Down1 DNF 1

now > 0
stEV > 0
now > stEV

Down1 SP 29
Down1 SP 6

200 > 0
now− stEV > 0
200 < now− stEV

Down1 SP 30
Down1 SP 6

200 > 0
now− stEV > 0
200 = now− stEV

Down1 DNF 2
Down1 VIS

st = d0
hPos = down
stEV = 0

Down1 DNF 3
Down1 VIS

st 6= d0

Down1 DNF 4
Down1 VIS

hPos 6= down

Down1 DNF 5
Down1 VIS

200 > now− stEV
stEV 6= 0

B Abstract Test Cases

M. Cristiá 109

ReadGearsExtending FT 7 TCASE
ReadGearsExtending FT 7

gExt = {(forward 7→ y),(left 7→ y),(right 7→ y)}
sGExt = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
lgsfl = on
g? = forward
v? = {(s1 7→ y),(s2 7→ y),(s3 7→ y)}

ReadGearsExtending FT 8 TCASE
ReadGearsExtending FT 8

gExt = {(forward 7→ y),(left 7→ y),(right 7→ y)}
sGExt = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
lgsfl = on
g? = left
v? = {(s1 7→ y),(s2 7→ y),(s3 7→ y)}

ReadGearsExtending FT 9 TCASE
ReadGearsExtending FT 9

gExt = {(forward 7→ y),(left 7→ y),(right 7→ y)}
sGExt = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
lgsfl = on
g? = right
v? = {(s1 7→ y),(s2 7→ y),(s3 7→ y)}

ReadGearsExtending FT 13 TCASE
ReadGearsExtending FT 13

gExt = {(forward 7→ y),(left 7→ y),(right 7→ y)}
sGExt = {(forward 7→ {s1,s2,s3}),(left 7→ {s1}),(right 7→ {s1})}
lgsfl = on
g? = forward
v? = {(s1 7→ y),(s2 7→ y),(s3 7→ n)}

ReadGearsExtending FT 14 TCASE
ReadGearsExtending FT 14

gExt = {(forward 7→ y),(left 7→ y),(right 7→ y)}
sGExt = {(forward 7→ {s1}),(left 7→ {s1,s2,s3}),(right 7→ {s1})}
lgsfl = on
g? = left
v? = {(s1 7→ y),(s2 7→ y),(s3 7→ n)}

110 Z Specification of the Landing Gear System

ReadGearsExtending FT 15 TCASE
ReadGearsExtending FT 15

gExt = {(forward 7→ y),(left 7→ y),(right 7→ y)}
sGExt = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1,s2,s3})}
lgsfl = on
g? = right
v? = {(s1 7→ y),(s2 7→ y),(s3 7→ n)}

ReadGearsExtending FT 16 TCASE
ReadGearsExtending FT 16

gExt = {(forward 7→ y),(left 7→ y),(right 7→ y)}
sGExt = {(forward 7→ {s1,s2,s3}),(left 7→ {s1}),(right 7→ {s1})}
lgsfl = on
g? = forward
v? = {(s1 7→ y),(s2 7→ n),(s3 7→ n)}

ReadGearsExtending FT 17 TCASE
ReadGearsExtending FT 17

gExt = {(forward 7→ y),(left 7→ y),(right 7→ y)}
sGExt = {(forward 7→ {s1}),(left 7→ {s1,s2,s3}),(right 7→ {s1})}
lgsfl = on
g? = left
v? = {(s1 7→ y),(s2 7→ n),(s3 7→ n)}

ReadGearsExtending FT 18 TCASE
ReadGearsExtending FT 18

gExt = {(forward 7→ y),(left 7→ y),(right 7→ y)}
sGExt = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1,s2,s3})}
lgsfl = on
g? = right
v? = {(s1 7→ y),(s2 7→ n),(s3 7→ n)}

ReadGearsExtending FT 19 TCASE
ReadGearsExtending FT 19

gExt = {(forward 7→ y),(left 7→ y),(right 7→ y)}
sGExt = {(forward 7→ {s1,s2,s3}),(left 7→ {s1}),(right 7→ {s1})}
lgsfl = on
g? = forward
v? = {(s1 7→ y),(s2 7→ y),(s3 7→ n)}

M. Cristiá 111

ReadGearsExtending FT 20 TCASE
ReadGearsExtending FT 20

gExt = {(forward 7→ y),(left 7→ y),(right 7→ y)}
sGExt = {(forward 7→ {s1}),(left 7→ {s1,s2,s3}),(right 7→ {s1})}
lgsfl = on
g? = left
v? = {(s1 7→ y),(s2 7→ y),(s3 7→ n)}

ReadGearsExtending FT 21 TCASE
ReadGearsExtending FT 21

gExt = {(forward 7→ y),(left 7→ y),(right 7→ y)}
sGExt = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1,s2,s3})}
lgsfl = on
g? = right
v? = {(s1 7→ y),(s2 7→ y),(s3 7→ n)}

ReadGearsExtending FT 28 TCASE
ReadGearsExtending FT 28

gExt = {(forward 7→ y),(left 7→ y),(right 7→ y)}
sGExt = {(forward 7→ /0),(left 7→ {s1}),(right 7→ {s1})}
lgsfl = on
g? = forward
v? = {(s1 7→ y),(s2 7→ y),(s3 7→ y)}

ReadGearsExtending FT 29 TCASE
ReadGearsExtending FT 29

gExt = {(forward 7→ y),(left 7→ y),(right 7→ y)}
sGExt = {(forward 7→ {s1}),(left 7→ /0),(right 7→ {s1})}
lgsfl = on
g? = left
v? = {(s1 7→ y),(s2 7→ y),(s3 7→ y)}

ReadGearsExtending FT 30 TCASE
ReadGearsExtending FT 30

gExt = {(forward 7→ y),(left 7→ y),(right 7→ y)}
sGExt = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ /0)}
lgsfl = on
g? = right
v? = {(s1 7→ y),(s2 7→ y),(s3 7→ y)}

112 Z Specification of the Landing Gear System

ReadGearsExtending FT 31 TCASE
ReadGearsExtending FT 31

gExt = {(forward 7→ y),(left 7→ y),(right 7→ y)}
sGExt = {(forward 7→ /0),(left 7→ {s1}),(right 7→ {s1})}
lgsfl = on
g? = forward
v? = {(s1 7→ y),(s2 7→ y),(s3 7→ y)}

ReadGearsExtending FT 32 TCASE
ReadGearsExtending FT 32

gExt = {(forward 7→ y),(left 7→ y),(right 7→ y)}
sGExt = {(forward 7→ {s1}),(left 7→ /0),(right 7→ {s1})}
lgsfl = on
g? = left
v? = {(s1 7→ y),(s2 7→ y),(s3 7→ y)}

ReadGearsExtending FT 33 TCASE
ReadGearsExtending FT 33

gExt = {(forward 7→ y),(left 7→ y),(right 7→ y)}
sGExt = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ /0)}
lgsfl = on
g? = right
v? = {(s1 7→ y),(s2 7→ y),(s3 7→ y)}

ReadGearsRetracting FT 7 TCASE
ReadGearsRetracting FT 7

lgsfl = on
sGRec = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
g? = forward
gRec = {(forward 7→ y),(left 7→ y),(right 7→ y)}
v? = {(s1 7→ y),(s2 7→ y),(s3 7→ y)}

ReadGearsRetracting FT 8 TCASE
ReadGearsRetracting FT 8

lgsfl = on
sGRec = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
g? = left
gRec = {(forward 7→ y),(left 7→ y),(right 7→ y)}
v? = {(s1 7→ y),(s2 7→ y),(s3 7→ y)}

M. Cristiá 113

ReadGearsRetracting FT 9 TCASE
ReadGearsRetracting FT 9

lgsfl = on
sGRec = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
g? = right
gRec = {(forward 7→ y),(left 7→ y),(right 7→ y)}
v? = {(s1 7→ y),(s2 7→ y),(s3 7→ y)}

ReadGearsRetracting FT 13 TCASE
ReadGearsRetracting FT 13

lgsfl = on
sGRec = {(forward 7→ {s1,s2,s3}),(left 7→ {s1}),(right 7→ {s1})}
g? = forward
gRec = {(forward 7→ y),(left 7→ y),(right 7→ y)}
v? = {(s1 7→ y),(s2 7→ y),(s3 7→ n)}

ReadGearsRetracting FT 14 TCASE
ReadGearsRetracting FT 14

lgsfl = on
sGRec = {(forward 7→ {s1}),(left 7→ {s1,s2,s3}),(right 7→ {s1})}
g? = left
gRec = {(forward 7→ y),(left 7→ y),(right 7→ y)}
v? = {(s1 7→ y),(s2 7→ y),(s3 7→ n)}

ReadGearsRetracting FT 15 TCASE
ReadGearsRetracting FT 15

lgsfl = on
sGRec = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1,s2,s3})}
g? = right
gRec = {(forward 7→ y),(left 7→ y),(right 7→ y)}
v? = {(s1 7→ y),(s2 7→ y),(s3 7→ n)}

ReadGearsRetracting FT 16 TCASE
ReadGearsRetracting FT 16

lgsfl = on
sGRec = {(forward 7→ {s1,s2,s3}),(left 7→ {s1}),(right 7→ {s1})}
g? = forward
gRec = {(forward 7→ y),(left 7→ y),(right 7→ y)}
v? = {(s1 7→ y),(s2 7→ n),(s3 7→ n)}

114 Z Specification of the Landing Gear System

ReadGearsRetracting FT 17 TCASE
ReadGearsRetracting FT 17

lgsfl = on
sGRec = {(forward 7→ {s1}),(left 7→ {s1,s2,s3}),(right 7→ {s1})}
g? = left
gRec = {(forward 7→ y),(left 7→ y),(right 7→ y)}
v? = {(s1 7→ y),(s2 7→ n),(s3 7→ n)}

ReadGearsRetracting FT 18 TCASE
ReadGearsRetracting FT 18

lgsfl = on
sGRec = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1,s2,s3})}
g? = right
gRec = {(forward 7→ y),(left 7→ y),(right 7→ y)}
v? = {(s1 7→ y),(s2 7→ n),(s3 7→ n)}

ReadGearsRetracting FT 19 TCASE
ReadGearsRetracting FT 19

lgsfl = on
sGRec = {(forward 7→ {s1,s2,s3}),(left 7→ {s1}),(right 7→ {s1})}
g? = forward
gRec = {(forward 7→ y),(left 7→ y),(right 7→ y)}
v? = {(s1 7→ y),(s2 7→ y),(s3 7→ n)}

ReadGearsRetracting FT 20 TCASE
ReadGearsRetracting FT 20

lgsfl = on
sGRec = {(forward 7→ {s1}),(left 7→ {s1,s2,s3}),(right 7→ {s1})}
g? = left
gRec = {(forward 7→ y),(left 7→ y),(right 7→ y)}
v? = {(s1 7→ y),(s2 7→ y),(s3 7→ n)}

ReadGearsRetracting FT 21 TCASE
ReadGearsRetracting FT 21

lgsfl = on
sGRec = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1,s2,s3})}
g? = right
gRec = {(forward 7→ y),(left 7→ y),(right 7→ y)}
v? = {(s1 7→ y),(s2 7→ y),(s3 7→ n)}

M. Cristiá 115

ReadGearsRetracting FT 28 TCASE
ReadGearsRetracting FT 28

lgsfl = on
sGRec = {(forward 7→ /0),(left 7→ {s1}),(right 7→ {s1})}
g? = forward
gRec = {(forward 7→ y),(left 7→ y),(right 7→ y)}
v? = {(s1 7→ y),(s2 7→ y),(s3 7→ y)}

ReadGearsRetracting FT 29 TCASE
ReadGearsRetracting FT 29

lgsfl = on
sGRec = {(forward 7→ {s1}),(left 7→ /0),(right 7→ {s1})}
g? = left
gRec = {(forward 7→ y),(left 7→ y),(right 7→ y)}
v? = {(s1 7→ y),(s2 7→ y),(s3 7→ y)}

ReadGearsRetracting FT 30 TCASE
ReadGearsRetracting FT 30

lgsfl = on
sGRec = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ /0)}
g? = right
gRec = {(forward 7→ y),(left 7→ y),(right 7→ y)}
v? = {(s1 7→ y),(s2 7→ y),(s3 7→ y)}

ReadGearsRetracting FT 31 TCASE
ReadGearsRetracting FT 31

lgsfl = on
sGRec = {(forward 7→ /0),(left 7→ {s1}),(right 7→ {s1})}
g? = forward
gRec = {(forward 7→ y),(left 7→ y),(right 7→ y)}
v? = {(s1 7→ y),(s2 7→ y),(s3 7→ y)}

ReadGearsRetracting FT 32 TCASE
ReadGearsRetracting FT 32

lgsfl = on
sGRec = {(forward 7→ {s1}),(left 7→ /0),(right 7→ {s1})}
g? = left
gRec = {(forward 7→ y),(left 7→ y),(right 7→ y)}
v? = {(s1 7→ y),(s2 7→ y),(s3 7→ y)}

116 Z Specification of the Landing Gear System

ReadGearsRetracting FT 33 TCASE
ReadGearsRetracting FT 33

lgsfl = on
sGRec = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ /0)}
g? = right
gRec = {(forward 7→ y),(left 7→ y),(right 7→ y)}
v? = {(s1 7→ y),(s2 7→ y),(s3 7→ y)}

HandleNotChanged SP 6 TCASE
HandleNotChanged SP 6

l20 = 0
hPos = down
now = 21
lHPCh = 1

HandleNotChanged DNF 2 TCASE
HandleNotChanged DNF 2

l20 = 0
hPos = down
now = 0
lHPCh = 0

HandleNotChanged DNF 3 TCASE
HandleNotChanged DNF 3

l20 = 0
hPos = down
now = 0
lHPCh = 0

Up2 SP 335 TCASE
Up2 SP 335

l20 = 0
doEV = pressing
stEV = 0
hPos = up
st = u1
stDCEV = 0
now = 201
dcEV = pressing
stDOEV = 0
lHPCh = 0

M. Cristiá 117

Up2 SP 347 TCASE
Up2 SP 347

l20 = 0
doEV = pressing
stEV = 0
hPos = up
st = u1
stDCEV = 1
now = 201
dcEV = pressing
stDOEV = 0
lHPCh = 0

Up2 SP 348 TCASE
Up2 SP 348

l20 = 0
doEV = pressing
stEV = 0
hPos = up
st = u1
stDCEV = 101
now = 201
dcEV = pressing
stDOEV = 0
lHPCh = 0

Up2 SP 365 TCASE
Up2 SP 365

l20 = 0
doEV = pressing
stEV = 0
hPos = up
st = u1
stDCEV = 0
now = 200
dcEV = pressing
stDOEV = 0
lHPCh = 0

118 Z Specification of the Landing Gear System

Up2 SP 377 TCASE
Up2 SP 377

l20 = 0
doEV = pressing
stEV = 0
hPos = up
st = u1
stDCEV = 1
now = 200
dcEV = pressing
stDOEV = 0
lHPCh = 0

Up2 SP 378 TCASE
Up2 SP 378

l20 = 0
doEV = pressing
stEV = 0
hPos = up
st = u1
stDCEV = 100
now = 200
dcEV = pressing
stDOEV = 0
lHPCh = 0

Up2 SP 707 TCASE
Up2 SP 707

l20 = 0
doEV = pressing
stEV = 1
hPos = up
st = u1
stDCEV = 0
now = 202
dcEV = pressing
stDOEV = 0
lHPCh = 0

M. Cristiá 119

Up2 SP 719 TCASE
Up2 SP 719

l20 = 0
doEV = pressing
stEV = 1
hPos = up
st = u1
stDCEV = 1
now = 202
dcEV = pressing
stDOEV = 0
lHPCh = 0

Up2 SP 720 TCASE
Up2 SP 720

l20 = 0
doEV = pressing
stEV = 1
hPos = up
st = u1
stDCEV = 102
now = 202
dcEV = pressing
stDOEV = 0
lHPCh = 0

Up2 SP 737 TCASE
Up2 SP 737

l20 = 0
doEV = pressing
stEV = 1
hPos = up
st = u1
stDCEV = 0
now = 201
dcEV = pressing
stDOEV = 0
lHPCh = 0

120 Z Specification of the Landing Gear System

Up2 SP 749 TCASE
Up2 SP 749

l20 = 0
doEV = pressing
stEV = 1
hPos = up
st = u1
stDCEV = 1
now = 201
dcEV = pressing
stDOEV = 0
lHPCh = 0

Up2 SP 750 TCASE
Up2 SP 750

l20 = 0
doEV = pressing
stEV = 1
hPos = up
st = u1
stDCEV = 101
now = 201
dcEV = pressing
stDOEV = 0
lHPCh = 0

Up2 DNF 2 TCASE
Up2 DNF 2

l20 = 0
doEV = pressing
stEV = 0
hPos = up
st = u1
stDCEV = 0
now = 200
dcEV = pressing
stDOEV = 0
lHPCh = 0

M. Cristiá 121

Up2 DNF 3 TCASE
Up2 DNF 3

l20 = 0
doEV = pressing
stEV = 0
hPos = down
st = u1
stDCEV = 0
now = 0
dcEV = pressing
stDOEV = 0
lHPCh = 0

Up2 DNF 4 TCASE
Up2 DNF 4

l20 = 0
doEV = pressing
stEV = 0
hPos = down
st = init
stDCEV = 0
now = 0
dcEV = pressing
stDOEV = 0
lHPCh = 0

Up2 DNF 5 TCASE
Up2 DNF 5

l20 = 0
doEV = pressing
stEV = 0
hPos = down
st = init
stDCEV = 0
now = 0
dcEV = pressing
stDOEV = 0
lHPCh = 0

122 Z Specification of the Landing Gear System

Up2 DNF 6 TCASE
Up2 DNF 6

l20 = 0
doEV = pressing
stEV = 0
hPos = down
st = init
stDCEV = 1
now = 0
dcEV = pressing
stDOEV = 0
lHPCh = 0

ReadAnalogicalSwitch DNF 3 TCASE
ReadAnalogicalSwitch DNF 3

lgsfl = on
sAS = /0
as = y
v? = {(s1 7→ y),(s2 7→ y),(s3 7→ y)}

ReadAnalogicalSwitch DNF 6 TCASE
ReadAnalogicalSwitch DNF 6

lgsfl = on
sAS = {s1,s2,s3}
as = y
v? = {(s1 7→ y),(s2 7→ y),(s3 7→ n)}

ReadAnalogicalSwitch DNF 7 TCASE
ReadAnalogicalSwitch DNF 7

lgsfl = on
sAS = {s1,s2,s3}
as = y
v? = {(s1 7→ y),(s2 7→ n),(s3 7→ n)}

ReadAnalogicalSwitch DNF 8 TCASE
ReadAnalogicalSwitch DNF 8

lgsfl = on
sAS = {s1,s2,s3}
as = y
v? = {(s1 7→ y),(s2 7→ y),(s3 7→ n)}

M. Cristiá 123

ReadAnalogicalSwitch DNF 11 TCASE
ReadAnalogicalSwitch DNF 11

lgsfl = on
sAS = /0
as = y
v? = {(s1 7→ y),(s2 7→ y),(s3 7→ y)}

ReadAnalogicalSwitch DNF 12 TCASE
ReadAnalogicalSwitch DNF 12

lgsfl = on
sAS = /0
as = y
v? = {(s1 7→ y),(s2 7→ y),(s3 7→ y)}

Up1 SP 17 TCASE
Up1 SP 17

l20 = 0
stEV = 0
hPos = up
st = u0
gEV = pressing
stGEV = 0
spGEV = 0
now = 201
lHPCh = 0

Up1 SP 18 TCASE
Up1 SP 18

l20 = 0
stEV = 0
hPos = up
st = u0
gEV = pressing
stGEV = 0
spGEV = 0
now = 200
lHPCh = 0

124 Z Specification of the Landing Gear System

Up1 SP 29 TCASE
Up1 SP 29

l20 = 0
stEV = 1
hPos = up
st = u0
gEV = pressing
stGEV = 0
spGEV = 0
now = 202
lHPCh = 0

Up1 SP 30 TCASE
Up1 SP 30

l20 = 0
stEV = 1
hPos = up
st = u0
gEV = pressing
stGEV = 0
spGEV = 0
now = 201
lHPCh = 0

Up1 DNF 2 TCASE
Up1 DNF 2

l20 = 0
stEV = 0
hPos = up
st = u0
gEV = pressing
stGEV = 0
spGEV = 0
now = 0
lHPCh = 0

M. Cristiá 125

Up1 DNF 3 TCASE
Up1 DNF 3

l20 = 0
stEV = 0
hPos = down
st = init
gEV = pressing
stGEV = 0
spGEV = 0
now = 0
lHPCh = 0

Up1 DNF 4 TCASE
Up1 DNF 4

l20 = 0
stEV = 0
hPos = down
st = init
gEV = pressing
stGEV = 0
spGEV = 0
now = 0
lHPCh = 0

Up1 DNF 5 TCASE
Up1 DNF 5

l20 = 0
stEV = 1
hPos = down
st = init
gEV = pressing
stGEV = 0
spGEV = 0
now = 0
lHPCh = 0

126 Z Specification of the Landing Gear System

Up4 SP 17 TCASE
Up4 SP 17

l20 = 0
grEV = pressing
hPos = up
st = u3
sGRec = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
stGREV = 0
spEV = 0
now = 1001
lHPCh = 0
gRec = {(forward 7→ y),(left 7→ y),(right 7→ y)}

Up4 SP 18 TCASE
Up4 SP 18

l20 = 0
grEV = pressing
hPos = up
st = u3
sGRec = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
stGREV = 0
spEV = 0
now = 1000
lHPCh = 0
gRec = {(forward 7→ y),(left 7→ y),(right 7→ y)}

Up4 SP 29 TCASE
Up4 SP 29

l20 = 0
grEV = pressing
hPos = up
st = u3
sGRec = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
stGREV = 0
spEV = 1
now = 1002
lHPCh = 0
gRec = {(forward 7→ y),(left 7→ y),(right 7→ y)}

M. Cristiá 127

Up4 SP 30 TCASE
Up4 SP 30

l20 = 0
grEV = pressing
hPos = up
st = u3
sGRec = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
stGREV = 0
spEV = 1
now = 1001
lHPCh = 0
gRec = {(forward 7→ y),(left 7→ y),(right 7→ y)}

Up4 DNF 2 TCASE
Up4 DNF 2

l20 = 0
grEV = pressing
hPos = up
st = u3
sGRec = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
stGREV = 0
spEV = 0
now = 0
lHPCh = 0
gRec = {(forward 7→ y),(left 7→ y),(right 7→ y)}

Up4 DNF 3 TCASE
Up4 DNF 3

l20 = 0
grEV = pressing
hPos = down
st = u3
sGRec = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
stGREV = 0
spEV = 0
now = 0
lHPCh = 0
gRec = {(forward 7→ y),(left 7→ y),(right 7→ y)}

128 Z Specification of the Landing Gear System

Up4 DNF 4 TCASE
Up4 DNF 4

l20 = 0
grEV = pressing
hPos = down
st = init
sGRec = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
stGREV = 0
spEV = 0
now = 0
lHPCh = 0
gRec = {(forward 7→ y),(left 7→ y),(right 7→ y)}

Up4 DNF 5 TCASE
Up4 DNF 5

l20 = 0
grEV = pressing
hPos = down
st = init
sGRec = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
stGREV = 0
spEV = 0
now = 0
lHPCh = 0
gRec = {(forward 7→ n),(left 7→ y),(right 7→ y)}

Up4 DNF 6 TCASE
Up4 DNF 6

l20 = 0
grEV = pressing
hPos = down
st = init
sGRec = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
stGREV = 0
spEV = 1
now = 0
lHPCh = 0
gRec = {(forward 7→ y),(left 7→ y),(right 7→ y)}

M. Cristiá 129

ReadDoorsOpening FT 7 TCASE
ReadDoorsOpening FT 7

lgsfl = on
g? = forward
sDOp = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
v? = {(s1 7→ y),(s2 7→ y),(s3 7→ y)}
dOp = {(forward 7→ y),(left 7→ y),(right 7→ y)}

ReadDoorsOpening FT 8 TCASE
ReadDoorsOpening FT 8

lgsfl = on
g? = left
sDOp = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
v? = {(s1 7→ y),(s2 7→ y),(s3 7→ y)}
dOp = {(forward 7→ y),(left 7→ y),(right 7→ y)}

ReadDoorsOpening FT 9 TCASE
ReadDoorsOpening FT 9

lgsfl = on
g? = right
sDOp = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
v? = {(s1 7→ y),(s2 7→ y),(s3 7→ y)}
dOp = {(forward 7→ y),(left 7→ y),(right 7→ y)}

ReadDoorsOpening FT 13 TCASE
ReadDoorsOpening FT 13

lgsfl = on
g? = forward
sDOp = {(forward 7→ {s1,s2,s3}),(left 7→ {s1}),(right 7→ {s1})}
v? = {(s1 7→ y),(s2 7→ y),(s3 7→ n)}
dOp = {(forward 7→ y),(left 7→ y),(right 7→ y)}

ReadDoorsOpening FT 14 TCASE
ReadDoorsOpening FT 14

lgsfl = on
g? = left
sDOp = {(forward 7→ {s1}),(left 7→ {s1,s2,s3}),(right 7→ {s1})}
v? = {(s1 7→ y),(s2 7→ y),(s3 7→ n)}
dOp = {(forward 7→ y),(left 7→ y),(right 7→ y)}

130 Z Specification of the Landing Gear System

ReadDoorsOpening FT 15 TCASE
ReadDoorsOpening FT 15

lgsfl = on
g? = right
sDOp = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1,s2,s3})}
v? = {(s1 7→ y),(s2 7→ y),(s3 7→ n)}
dOp = {(forward 7→ y),(left 7→ y),(right 7→ y)}

ReadDoorsOpening FT 16 TCASE
ReadDoorsOpening FT 16

lgsfl = on
g? = forward
sDOp = {(forward 7→ {s1,s2,s3}),(left 7→ {s1}),(right 7→ {s1})}
v? = {(s1 7→ y),(s2 7→ n),(s3 7→ n)}
dOp = {(forward 7→ y),(left 7→ y),(right 7→ y)}

ReadDoorsOpening FT 17 TCASE
ReadDoorsOpening FT 17

lgsfl = on
g? = left
sDOp = {(forward 7→ {s1}),(left 7→ {s1,s2,s3}),(right 7→ {s1})}
v? = {(s1 7→ y),(s2 7→ n),(s3 7→ n)}
dOp = {(forward 7→ y),(left 7→ y),(right 7→ y)}

ReadDoorsOpening FT 18 TCASE
ReadDoorsOpening FT 18

lgsfl = on
g? = right
sDOp = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1,s2,s3})}
v? = {(s1 7→ y),(s2 7→ n),(s3 7→ n)}
dOp = {(forward 7→ y),(left 7→ y),(right 7→ y)}

ReadDoorsOpening FT 19 TCASE
ReadDoorsOpening FT 19

lgsfl = on
g? = forward
sDOp = {(forward 7→ {s1,s2,s3}),(left 7→ {s1}),(right 7→ {s1})}
v? = {(s1 7→ y),(s2 7→ y),(s3 7→ n)}
dOp = {(forward 7→ y),(left 7→ y),(right 7→ y)}

M. Cristiá 131

ReadDoorsOpening FT 20 TCASE
ReadDoorsOpening FT 20

lgsfl = on
g? = left
sDOp = {(forward 7→ {s1}),(left 7→ {s1,s2,s3}),(right 7→ {s1})}
v? = {(s1 7→ y),(s2 7→ y),(s3 7→ n)}
dOp = {(forward 7→ y),(left 7→ y),(right 7→ y)}

ReadDoorsOpening FT 21 TCASE
ReadDoorsOpening FT 21

lgsfl = on
g? = right
sDOp = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1,s2,s3})}
v? = {(s1 7→ y),(s2 7→ y),(s3 7→ n)}
dOp = {(forward 7→ y),(left 7→ y),(right 7→ y)}

ReadDoorsOpening FT 28 TCASE
ReadDoorsOpening FT 28

lgsfl = on
g? = forward
sDOp = {(forward 7→ /0),(left 7→ {s1}),(right 7→ {s1})}
v? = {(s1 7→ y),(s2 7→ y),(s3 7→ y)}
dOp = {(forward 7→ y),(left 7→ y),(right 7→ y)}

ReadDoorsOpening FT 29 TCASE
ReadDoorsOpening FT 29

lgsfl = on
g? = left
sDOp = {(forward 7→ {s1}),(left 7→ /0),(right 7→ {s1})}
v? = {(s1 7→ y),(s2 7→ y),(s3 7→ y)}
dOp = {(forward 7→ y),(left 7→ y),(right 7→ y)}

ReadDoorsOpening FT 30 TCASE
ReadDoorsOpening FT 30

lgsfl = on
g? = right
sDOp = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ /0)}
v? = {(s1 7→ y),(s2 7→ y),(s3 7→ y)}
dOp = {(forward 7→ y),(left 7→ y),(right 7→ y)}

132 Z Specification of the Landing Gear System

ReadDoorsOpening FT 31 TCASE
ReadDoorsOpening FT 31

lgsfl = on
g? = forward
sDOp = {(forward 7→ /0),(left 7→ {s1}),(right 7→ {s1})}
v? = {(s1 7→ y),(s2 7→ y),(s3 7→ y)}
dOp = {(forward 7→ y),(left 7→ y),(right 7→ y)}

ReadDoorsOpening FT 32 TCASE
ReadDoorsOpening FT 32

lgsfl = on
g? = left
sDOp = {(forward 7→ {s1}),(left 7→ /0),(right 7→ {s1})}
v? = {(s1 7→ y),(s2 7→ y),(s3 7→ y)}
dOp = {(forward 7→ y),(left 7→ y),(right 7→ y)}

ReadDoorsOpening FT 33 TCASE
ReadDoorsOpening FT 33

lgsfl = on
g? = right
sDOp = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ /0)}
v? = {(s1 7→ y),(s2 7→ y),(s3 7→ y)}
dOp = {(forward 7→ y),(left 7→ y),(right 7→ y)}

ChangeHandle DNF 1 TCASE
ChangeHandle DNF 1

l20 = 0
hPos = down
st = init
now = 0
lHPCh = 0

ChangeHandle DNF 2 TCASE
ChangeHandle DNF 2

l20 = 0
hPos = up
st = init
now = 0
lHPCh = 0

M. Cristiá 133

Up3 SP 335 TCASE
Up3 SP 335

l20 = 0
stEV = 0
now = 201
lHPCh = 0
dOp = {(forward 7→ y),(left 7→ y),(right 7→ y)}
grEV = pressing
sSA = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
hPos = up
st = u2
geEV = pressing
stGREV = 0
stGEEV = 0
sDOp = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
sa = {(forward 7→ n),(left 7→ n),(right 7→ n)}

Up3 SP 336 TCASE
Up3 SP 336

l20 = 0
stEV = 0
now = 200
lHPCh = 0
dOp = {(forward 7→ y),(left 7→ y),(right 7→ y)}
grEV = pressing
sSA = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
hPos = up
st = u2
geEV = pressing
stGREV = 0
stGEEV = 0
sDOp = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
sa = {(forward 7→ n),(left 7→ n),(right 7→ n)}

134 Z Specification of the Landing Gear System

Up3 SP 347 TCASE
Up3 SP 347

l20 = 0
stEV = 1
now = 202
lHPCh = 0
dOp = {(forward 7→ y),(left 7→ y),(right 7→ y)}
grEV = pressing
sSA = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
hPos = up
st = u2
geEV = pressing
stGREV = 0
stGEEV = 0
sDOp = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
sa = {(forward 7→ n),(left 7→ n),(right 7→ n)}

Up3 SP 348 TCASE
Up3 SP 348

l20 = 0
stEV = 1
now = 201
lHPCh = 0
dOp = {(forward 7→ y),(left 7→ y),(right 7→ y)}
grEV = pressing
sSA = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
hPos = up
st = u2
geEV = pressing
stGREV = 0
stGEEV = 0
sDOp = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
sa = {(forward 7→ n),(left 7→ n),(right 7→ n)}

M. Cristiá 135

Up3 SP 707 TCASE
Up3 SP 707

l20 = 0
stEV = 0
now = 201
lHPCh = 0
dOp = {(forward 7→ y),(left 7→ y),(right 7→ y)}
grEV = pressing
sSA = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
hPos = up
st = u2
geEV = pressing
stGREV = 0
stGEEV = 1
sDOp = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
sa = {(forward 7→ n),(left 7→ n),(right 7→ n)}

Up3 SP 708 TCASE
Up3 SP 708

l20 = 0
stEV = 0
now = 200
lHPCh = 0
dOp = {(forward 7→ y),(left 7→ y),(right 7→ y)}
grEV = pressing
sSA = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
hPos = up
st = u2
geEV = pressing
stGREV = 0
stGEEV = 1
sDOp = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
sa = {(forward 7→ n),(left 7→ n),(right 7→ n)}

136 Z Specification of the Landing Gear System

Up3 SP 719 TCASE
Up3 SP 719

l20 = 0
stEV = 1
now = 202
lHPCh = 0
dOp = {(forward 7→ y),(left 7→ y),(right 7→ y)}
grEV = pressing
sSA = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
hPos = up
st = u2
geEV = pressing
stGREV = 0
stGEEV = 1
sDOp = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
sa = {(forward 7→ n),(left 7→ n),(right 7→ n)}

Up3 SP 720 TCASE
Up3 SP 720

l20 = 0
stEV = 1
now = 201
lHPCh = 0
dOp = {(forward 7→ y),(left 7→ y),(right 7→ y)}
grEV = pressing
sSA = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
hPos = up
st = u2
geEV = pressing
stGREV = 0
stGEEV = 1
sDOp = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
sa = {(forward 7→ n),(left 7→ n),(right 7→ n)}

M. Cristiá 137

Up3 SP 737 TCASE
Up3 SP 737

l20 = 0
stEV = 0
now = 201
lHPCh = 0
dOp = {(forward 7→ y),(left 7→ y),(right 7→ y)}
grEV = pressing
sSA = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
hPos = up
st = u2
geEV = pressing
stGREV = 0
stGEEV = 101
sDOp = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
sa = {(forward 7→ n),(left 7→ n),(right 7→ n)}

Up3 SP 738 TCASE
Up3 SP 738

l20 = 0
stEV = 0
now = 200
lHPCh = 0
dOp = {(forward 7→ y),(left 7→ y),(right 7→ y)}
grEV = pressing
sSA = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
hPos = up
st = u2
geEV = pressing
stGREV = 0
stGEEV = 100
sDOp = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
sa = {(forward 7→ n),(left 7→ n),(right 7→ n)}

138 Z Specification of the Landing Gear System

Up3 SP 749 TCASE
Up3 SP 749

l20 = 0
stEV = 1
now = 202
lHPCh = 0
dOp = {(forward 7→ y),(left 7→ y),(right 7→ y)}
grEV = pressing
sSA = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
hPos = up
st = u2
geEV = pressing
stGREV = 0
stGEEV = 102
sDOp = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
sa = {(forward 7→ n),(left 7→ n),(right 7→ n)}

Up3 SP 750 TCASE
Up3 SP 750

l20 = 0
stEV = 1
now = 201
lHPCh = 0
dOp = {(forward 7→ y),(left 7→ y),(right 7→ y)}
grEV = pressing
sSA = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
hPos = up
st = u2
geEV = pressing
stGREV = 0
stGEEV = 101
sDOp = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
sa = {(forward 7→ n),(left 7→ n),(right 7→ n)}

M. Cristiá 139

Up3 DNF 2 TCASE
Up3 DNF 2

l20 = 0
stEV = 0
now = 200
lHPCh = 0
dOp = {(forward 7→ y),(left 7→ y),(right 7→ y)}
grEV = pressing
sSA = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
hPos = up
st = u2
geEV = pressing
stGREV = 0
stGEEV = 0
sDOp = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
sa = {(forward 7→ n),(left 7→ n),(right 7→ n)}

Up3 DNF 3 TCASE
Up3 DNF 3

l20 = 0
stEV = 0
now = 0
lHPCh = 0
dOp = {(forward 7→ y),(left 7→ y),(right 7→ y)}
grEV = pressing
sSA = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
hPos = up
st = u2
geEV = pressing
stGREV = 0
stGEEV = 0
sDOp = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
sa = {(forward 7→ y),(left 7→ y),(right 7→ y)}

140 Z Specification of the Landing Gear System

Up3 DNF 4 TCASE
Up3 DNF 4

l20 = 0
stEV = 0
now = 0
lHPCh = 0
dOp = {(forward 7→ y),(left 7→ y),(right 7→ y)}
grEV = pressing
sSA = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
hPos = down
st = u2
geEV = pressing
stGREV = 0
stGEEV = 0
sDOp = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
sa = {(forward 7→ y),(left 7→ y),(right 7→ y)}

Up3 DNF 5 TCASE
Up3 DNF 5

l20 = 0
stEV = 0
now = 0
lHPCh = 0
dOp = {(forward 7→ y),(left 7→ y),(right 7→ y)}
grEV = pressing
sSA = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
hPos = down
st = init
geEV = pressing
stGREV = 0
stGEEV = 0
sDOp = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
sa = {(forward 7→ y),(left 7→ y),(right 7→ y)}

M. Cristiá 141

Up3 DNF 6 TCASE
Up3 DNF 6

l20 = 0
stEV = 0
now = 0
lHPCh = 0
dOp = {(forward 7→ n),(left 7→ y),(right 7→ y)}
grEV = pressing
sSA = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
hPos = down
st = init
geEV = pressing
stGREV = 0
stGEEV = 0
sDOp = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
sa = {(forward 7→ y),(left 7→ y),(right 7→ y)}

Up3 DNF 7 TCASE
Up3 DNF 7

l20 = 0
stEV = 0
now = 0
lHPCh = 0
dOp = {(forward 7→ y),(left 7→ y),(right 7→ y)}
grEV = pressing
sSA = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
hPos = down
st = init
geEV = pressing
stGREV = 0
stGEEV = 0
sDOp = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
sa = {(forward 7→ y),(left 7→ y),(right 7→ y)}

142 Z Specification of the Landing Gear System

Up3 DNF 8 TCASE
Up3 DNF 8

l20 = 0
stEV = 0
now = 0
lHPCh = 0
dOp = {(forward 7→ y),(left 7→ y),(right 7→ y)}
grEV = pressing
sSA = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
hPos = down
st = init
geEV = pressing
stGREV = 0
stGEEV = 1
sDOp = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
sa = {(forward 7→ y),(left 7→ y),(right 7→ y)}

Up6 SP 335 TCASE
Up6 SP 335

l20 = 0
doEV = pressing
stEV = 0
hPos = up
st = u5
stDCEV = 0
now = 201
dcEV = pressing
stDOEV = 0
lHPCh = 0

Up6 SP 347 TCASE
Up6 SP 347

l20 = 0
doEV = pressing
stEV = 0
hPos = up
st = u5
stDCEV = 0
now = 201
dcEV = pressing
stDOEV = 1
lHPCh = 0

M. Cristiá 143

Up6 SP 348 TCASE
Up6 SP 348

l20 = 0
doEV = pressing
stEV = 0
hPos = up
st = u5
stDCEV = 0
now = 201
dcEV = pressing
stDOEV = 101
lHPCh = 0

Up6 SP 365 TCASE
Up6 SP 365

l20 = 0
doEV = pressing
stEV = 0
hPos = up
st = u5
stDCEV = 0
now = 200
dcEV = pressing
stDOEV = 0
lHPCh = 0

Up6 SP 377 TCASE
Up6 SP 377

l20 = 0
doEV = pressing
stEV = 0
hPos = up
st = u5
stDCEV = 0
now = 200
dcEV = pressing
stDOEV = 1
lHPCh = 0

144 Z Specification of the Landing Gear System

Up6 SP 378 TCASE
Up6 SP 378

l20 = 0
doEV = pressing
stEV = 0
hPos = up
st = u5
stDCEV = 0
now = 200
dcEV = pressing
stDOEV = 100
lHPCh = 0

Up6 SP 707 TCASE
Up6 SP 707

l20 = 0
doEV = pressing
stEV = 1
hPos = up
st = u5
stDCEV = 0
now = 202
dcEV = pressing
stDOEV = 0
lHPCh = 0

Up6 SP 719 TCASE
Up6 SP 719

l20 = 0
doEV = pressing
stEV = 1
hPos = up
st = u5
stDCEV = 0
now = 202
dcEV = pressing
stDOEV = 1
lHPCh = 0

M. Cristiá 145

Up6 SP 720 TCASE
Up6 SP 720

l20 = 0
doEV = pressing
stEV = 1
hPos = up
st = u5
stDCEV = 0
now = 202
dcEV = pressing
stDOEV = 102
lHPCh = 0

Up6 SP 737 TCASE
Up6 SP 737

l20 = 0
doEV = pressing
stEV = 1
hPos = up
st = u5
stDCEV = 0
now = 201
dcEV = pressing
stDOEV = 0
lHPCh = 0

Up6 SP 749 TCASE
Up6 SP 749

l20 = 0
doEV = pressing
stEV = 1
hPos = up
st = u5
stDCEV = 0
now = 201
dcEV = pressing
stDOEV = 1
lHPCh = 0

146 Z Specification of the Landing Gear System

Up6 SP 750 TCASE
Up6 SP 750

l20 = 0
doEV = pressing
stEV = 1
hPos = up
st = u5
stDCEV = 0
now = 201
dcEV = pressing
stDOEV = 101
lHPCh = 0

Up6 DNF 2 TCASE
Up6 DNF 2

l20 = 0
doEV = pressing
stEV = 0
hPos = down
st = u5
stDCEV = 0
now = 0
dcEV = pressing
stDOEV = 0
lHPCh = 0

Up6 DNF 3 TCASE
Up6 DNF 3

l20 = 0
doEV = pressing
stEV = 0
hPos = down
st = init
stDCEV = 0
now = 0
dcEV = pressing
stDOEV = 0
lHPCh = 0

M. Cristiá 147

Up6 DNF 4 TCASE
Up6 DNF 4

l20 = 0
doEV = pressing
stEV = 0
hPos = down
st = init
stDCEV = 0
now = 0
dcEV = pressing
stDOEV = 0
lHPCh = 0

Up6 DNF 5 TCASE
Up6 DNF 5

l20 = 0
doEV = pressing
stEV = 0
hPos = down
st = init
stDCEV = 0
now = 0
dcEV = pressing
stDOEV = 0
lHPCh = 0

Up5 SP 17 TCASE
Up5 SP 17

l20 = 0
doEV = pressing
hPos = up
st = u4
spEV = 0
now = 1001
stDOEV = 0
lHPCh = 0

148 Z Specification of the Landing Gear System

Up5 SP 18 TCASE
Up5 SP 18

l20 = 0
doEV = pressing
hPos = up
st = u4
spEV = 0
now = 1000
stDOEV = 0
lHPCh = 0

Up5 SP 29 TCASE
Up5 SP 29

l20 = 0
doEV = pressing
hPos = up
st = u4
spEV = 1
now = 1002
stDOEV = 0
lHPCh = 0

Up5 SP 30 TCASE
Up5 SP 30

l20 = 0
doEV = pressing
hPos = up
st = u4
spEV = 1
now = 1001
stDOEV = 0
lHPCh = 0

M. Cristiá 149

Up5 DNF 2 TCASE
Up5 DNF 2

l20 = 0
doEV = pressing
hPos = down
st = u4
spEV = 0
now = 0
stDOEV = 0
lHPCh = 0

Up5 DNF 3 TCASE
Up5 DNF 3

l20 = 0
doEV = pressing
hPos = down
st = init
spEV = 0
now = 0
stDOEV = 0
lHPCh = 0

Up5 DNF 4 TCASE
Up5 DNF 4

l20 = 0
doEV = pressing
hPos = down
st = init
spEV = 0
now = 0
stDOEV = 0
lHPCh = 0

150 Z Specification of the Landing Gear System

Up8 SP 17 TCASE
Up8 SP 17

l20 = 0
hPos = up
st = u7
gEV = pressing
stGEV = 0
spEV = 0
spGEV = 0
now = 1001
lHPCh = 0

Up8 SP 18 TCASE
Up8 SP 18

l20 = 0
hPos = up
st = u7
gEV = pressing
stGEV = 0
spEV = 0
spGEV = 0
now = 1000
lHPCh = 0

Up8 SP 29 TCASE
Up8 SP 29

l20 = 0
hPos = up
st = u7
gEV = pressing
stGEV = 0
spEV = 1
spGEV = 0
now = 1002
lHPCh = 0

M. Cristiá 151

Up8 SP 30 TCASE
Up8 SP 30

l20 = 0
hPos = up
st = u7
gEV = pressing
stGEV = 0
spEV = 1
spGEV = 0
now = 1001
lHPCh = 0

Up8 DNF 2 TCASE
Up8 DNF 2

l20 = 0
hPos = down
st = u7
gEV = pressing
stGEV = 0
spEV = 0
spGEV = 0
now = 0
lHPCh = 0

Up8 DNF 3 TCASE
Up8 DNF 3

l20 = 0
hPos = down
st = init
gEV = pressing
stGEV = 0
spEV = 0
spGEV = 0
now = 0
lHPCh = 0

152 Z Specification of the Landing Gear System

Up8 DNF 4 TCASE
Up8 DNF 4

l20 = 0
hPos = down
st = init
gEV = pressing
stGEV = 0
spEV = 0
spGEV = 0
now = 0
lHPCh = 0

Up7 SP 17 TCASE
Up7 SP 17

l20 = 0
hPos = up
st = u6
sDCl = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
dCl = {(forward 7→ y),(left 7→ y),(right 7→ y)}
spEV = 0
stDCEV = 0
now = 1001
dcEV = pressing
lHPCh = 0

Up7 SP 18 TCASE
Up7 SP 18

l20 = 0
hPos = up
st = u6
sDCl = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
dCl = {(forward 7→ y),(left 7→ y),(right 7→ y)}
spEV = 0
stDCEV = 0
now = 1000
dcEV = pressing
lHPCh = 0

M. Cristiá 153

Up7 SP 29 TCASE
Up7 SP 29

l20 = 0
hPos = up
st = u6
sDCl = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
dCl = {(forward 7→ y),(left 7→ y),(right 7→ y)}
spEV = 1
stDCEV = 0
now = 1002
dcEV = pressing
lHPCh = 0

Up7 SP 30 TCASE
Up7 SP 30

l20 = 0
hPos = up
st = u6
sDCl = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
dCl = {(forward 7→ y),(left 7→ y),(right 7→ y)}
spEV = 1
stDCEV = 0
now = 1001
dcEV = pressing
lHPCh = 0

Up7 DNF 2 TCASE
Up7 DNF 2

l20 = 0
hPos = down
st = u6
sDCl = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
dCl = {(forward 7→ y),(left 7→ y),(right 7→ y)}
spEV = 0
stDCEV = 0
now = 0
dcEV = pressing
lHPCh = 0

154 Z Specification of the Landing Gear System

Up7 DNF 3 TCASE
Up7 DNF 3

l20 = 0
hPos = down
st = init
sDCl = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
dCl = {(forward 7→ y),(left 7→ y),(right 7→ y)}
spEV = 0
stDCEV = 0
now = 0
dcEV = pressing
lHPCh = 0

Up7 DNF 4 TCASE
Up7 DNF 4

l20 = 0
hPos = down
st = init
sDCl = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
dCl = {(forward 7→ n),(left 7→ y),(right 7→ y)}
spEV = 0
stDCEV = 0
now = 0
dcEV = pressing
lHPCh = 0

Up7 DNF 5 TCASE
Up7 DNF 5

l20 = 0
hPos = down
st = init
sDCl = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
dCl = {(forward 7→ y),(left 7→ y),(right 7→ y)}
spEV = 0
stDCEV = 0
now = 0
dcEV = pressing
lHPCh = 0

M. Cristiá 155

GearsManeuvering DNF 1 TCASE
GearsManeuvering DNF 1

gExt = {(forward 7→ n),(left 7→ y),(right 7→ y)}
sGExt = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
sGRec = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
gml = on
sDCl = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
dCl = {(forward 7→ y),(left 7→ y),(right 7→ y)}
gldl = on
gRec = {(forward 7→ n),(left 7→ y),(right 7→ y)}

GearsManeuvering DNF 2 TCASE
GearsManeuvering DNF 2

gExt = {(forward 7→ y),(left 7→ y),(right 7→ y)}
sGExt = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
sGRec = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
gml = on
sDCl = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
dCl = {(forward 7→ n),(left 7→ y),(right 7→ y)}
gldl = on
gRec = {(forward 7→ y),(left 7→ y),(right 7→ y)}

GearsManeuvering DNF 3 TCASE
GearsManeuvering DNF 3

gExt = {(forward 7→ y),(left 7→ y),(right 7→ y)}
sGExt = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
sGRec = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
gml = on
sDCl = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
dCl = {(forward 7→ y),(left 7→ y),(right 7→ y)}
gldl = on
gRec = {(forward 7→ y),(left 7→ y),(right 7→ y)}

156 Z Specification of the Landing Gear System

GearsManeuvering DNF 4 TCASE
GearsManeuvering DNF 4

gExt = {(forward 7→ y),(left 7→ y),(right 7→ y)}
sGExt = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
sGRec = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
gml = on
sDCl = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
dCl = {(forward 7→ y),(left 7→ y),(right 7→ y)}
gldl = on
gRec = {(forward 7→ y),(left 7→ y),(right 7→ y)}

Down5 SP 17 TCASE
Down5 SP 17

l20 = 0
doEV = pressing
hPos = down
st = d4
spEV = 0
now = 1001
stDOEV = 0
lHPCh = 0

Down5 SP 18 TCASE
Down5 SP 18

l20 = 0
doEV = pressing
hPos = down
st = d4
spEV = 0
now = 1000
stDOEV = 0
lHPCh = 0

M. Cristiá 157

Down5 SP 29 TCASE
Down5 SP 29

l20 = 0
doEV = pressing
hPos = down
st = d4
spEV = 1
now = 1002
stDOEV = 0
lHPCh = 0

Down5 SP 30 TCASE
Down5 SP 30

l20 = 0
doEV = pressing
hPos = down
st = d4
spEV = 1
now = 1001
stDOEV = 0
lHPCh = 0

Down5 DNF 2 TCASE
Down5 DNF 2

l20 = 0
doEV = pressing
hPos = up
st = d4
spEV = 0
now = 0
stDOEV = 0
lHPCh = 0

158 Z Specification of the Landing Gear System

Down5 DNF 3 TCASE
Down5 DNF 3

l20 = 0
doEV = pressing
hPos = down
st = init
spEV = 0
now = 0
stDOEV = 0
lHPCh = 0

Down5 DNF 4 TCASE
Down5 DNF 4

l20 = 0
doEV = pressing
hPos = down
st = init
spEV = 0
now = 0
stDOEV = 0
lHPCh = 0

Down4 SP 17 TCASE
Down4 SP 17

l20 = 0
gExt = {(forward 7→ y),(left 7→ y),(right 7→ y)}
sGExt = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
hPos = down
st = d3
geEV = pressing
spEV = 0
now = 1001
lHPCh = 0
stGEEV = 0

M. Cristiá 159

Down4 SP 18 TCASE
Down4 SP 18

l20 = 0
gExt = {(forward 7→ y),(left 7→ y),(right 7→ y)}
sGExt = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
hPos = down
st = d3
geEV = pressing
spEV = 0
now = 1000
lHPCh = 0
stGEEV = 0

Down4 SP 29 TCASE
Down4 SP 29

l20 = 0
gExt = {(forward 7→ y),(left 7→ y),(right 7→ y)}
sGExt = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
hPos = down
st = d3
geEV = pressing
spEV = 1
now = 1002
lHPCh = 0
stGEEV = 0

Down4 SP 30 TCASE
Down4 SP 30

l20 = 0
gExt = {(forward 7→ y),(left 7→ y),(right 7→ y)}
sGExt = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
hPos = down
st = d3
geEV = pressing
spEV = 1
now = 1001
lHPCh = 0
stGEEV = 0

160 Z Specification of the Landing Gear System

Down4 DNF 2 TCASE
Down4 DNF 2

l20 = 0
gExt = {(forward 7→ y),(left 7→ y),(right 7→ y)}
sGExt = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
hPos = down
st = d3
geEV = pressing
spEV = 0
now = 0
lHPCh = 0
stGEEV = 0

Down4 DNF 3 TCASE
Down4 DNF 3

l20 = 0
gExt = {(forward 7→ y),(left 7→ y),(right 7→ y)}
sGExt = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
hPos = up
st = d3
geEV = pressing
spEV = 0
now = 0
lHPCh = 0
stGEEV = 0

Down4 DNF 4 TCASE
Down4 DNF 4

l20 = 0
gExt = {(forward 7→ y),(left 7→ y),(right 7→ y)}
sGExt = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
hPos = down
st = init
geEV = pressing
spEV = 0
now = 0
lHPCh = 0
stGEEV = 0

M. Cristiá 161

Down4 DNF 5 TCASE
Down4 DNF 5

l20 = 0
gExt = {(forward 7→ n),(left 7→ y),(right 7→ y)}
sGExt = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
hPos = down
st = init
geEV = pressing
spEV = 0
now = 0
lHPCh = 0
stGEEV = 0

Down4 DNF 6 TCASE
Down4 DNF 6

l20 = 0
gExt = {(forward 7→ y),(left 7→ y),(right 7→ y)}
sGExt = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
hPos = down
st = init
geEV = pressing
spEV = 1
now = 0
lHPCh = 0
stGEEV = 0

HydraulicCircuitM SP 59 TCASE
HydraulicCircuitM SP 59

hc = n
lgsfl = on
gEV = pressing
sHC = /0
stGEV = 1
spGEV = 0
now = 2002

162 Z Specification of the Landing Gear System

HydraulicCircuitM SP 60 TCASE
HydraulicCircuitM SP 60

hc = n
lgsfl = on
gEV = pressing
sHC = /0
stGEV = 1
spGEV = 0
now = 2001

HydraulicCircuitM SP 29 TCASE
HydraulicCircuitM SP 29

hc = y
lgsfl = on
gEV = pressing
sHC = /0
stGEV = 0
spGEV = 1
now = 10002

HydraulicCircuitM SP 30 TCASE
HydraulicCircuitM SP 30

hc = y
lgsfl = on
gEV = pressing
sHC = /0
stGEV = 0
spGEV = 1
now = 10001

HydraulicCircuitM DNF 3 TCASE
HydraulicCircuitM DNF 3

hc = y
lgsfl = on
gEV = pressing
sHC = /0
stGEV = 0
spGEV = 0
now = 0

M. Cristiá 163

HydraulicCircuitM DNF 4 TCASE
HydraulicCircuitM DNF 4

hc = y
lgsfl = on
gEV = pressing
sHC = /0
stGEV = 0
spGEV = 0
now = 0

HydraulicCircuitM DNF 5 TCASE
HydraulicCircuitM DNF 5

hc = y
lgsfl = on
gEV = pressing
sHC = /0
stGEV = 0
spGEV = 0
now = 0

HydraulicCircuitM DNF 6 TCASE
HydraulicCircuitM DNF 6

hc = n
lgsfl = on
gEV = pressing
sHC = /0
stGEV = 0
spGEV = 0
now = 0

HydraulicCircuitM DNF 7 TCASE
HydraulicCircuitM DNF 7

hc = y
lgsfl = on
gEV = pressing
sHC = /0
stGEV = 0
spGEV = 0
now = 0

164 Z Specification of the Landing Gear System

HydraulicCircuitM DNF 8 TCASE
HydraulicCircuitM DNF 8

hc = y
lgsfl = on
gEV = pressing
sHC = /0
stGEV = 0
spGEV = 0
now = 0

Down3 SP 335 TCASE
Down3 SP 335

l20 = 0
grEV = pressing
stEV = 0
hPos = down
st = d2
stGREV = 0
geEV = pressing
now = 201
lHPCh = 0
sDOp = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
stGEEV = 0
dOp = {(forward 7→ y),(left 7→ y),(right 7→ y)}

Down3 SP 347 TCASE
Down3 SP 347

l20 = 0
grEV = pressing
stEV = 0
hPos = down
st = d2
stGREV = 1
geEV = pressing
now = 201
lHPCh = 0
sDOp = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
stGEEV = 0
dOp = {(forward 7→ y),(left 7→ y),(right 7→ y)}

M. Cristiá 165

Down3 SP 348 TCASE
Down3 SP 348

l20 = 0
grEV = pressing
stEV = 0
hPos = down
st = d2
stGREV = 101
geEV = pressing
now = 201
lHPCh = 0
sDOp = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
stGEEV = 0
dOp = {(forward 7→ y),(left 7→ y),(right 7→ y)}

Down3 SP 365 TCASE
Down3 SP 365

l20 = 0
grEV = pressing
stEV = 0
hPos = down
st = d2
stGREV = 0
geEV = pressing
now = 200
lHPCh = 0
sDOp = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
stGEEV = 0
dOp = {(forward 7→ y),(left 7→ y),(right 7→ y)}

166 Z Specification of the Landing Gear System

Down3 SP 377 TCASE
Down3 SP 377

l20 = 0
grEV = pressing
stEV = 0
hPos = down
st = d2
stGREV = 1
geEV = pressing
now = 200
lHPCh = 0
sDOp = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
stGEEV = 0
dOp = {(forward 7→ y),(left 7→ y),(right 7→ y)}

Down3 SP 378 TCASE
Down3 SP 378

l20 = 0
grEV = pressing
stEV = 0
hPos = down
st = d2
stGREV = 100
geEV = pressing
now = 200
lHPCh = 0
sDOp = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
stGEEV = 0
dOp = {(forward 7→ y),(left 7→ y),(right 7→ y)}

M. Cristiá 167

Down3 SP 707 TCASE
Down3 SP 707

l20 = 0
grEV = pressing
stEV = 1
hPos = down
st = d2
stGREV = 0
geEV = pressing
now = 202
lHPCh = 0
sDOp = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
stGEEV = 0
dOp = {(forward 7→ y),(left 7→ y),(right 7→ y)}

Down3 SP 719 TCASE
Down3 SP 719

l20 = 0
grEV = pressing
stEV = 1
hPos = down
st = d2
stGREV = 1
geEV = pressing
now = 202
lHPCh = 0
sDOp = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
stGEEV = 0
dOp = {(forward 7→ y),(left 7→ y),(right 7→ y)}

168 Z Specification of the Landing Gear System

Down3 SP 720 TCASE
Down3 SP 720

l20 = 0
grEV = pressing
stEV = 1
hPos = down
st = d2
stGREV = 102
geEV = pressing
now = 202
lHPCh = 0
sDOp = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
stGEEV = 0
dOp = {(forward 7→ y),(left 7→ y),(right 7→ y)}

Down3 SP 737 TCASE
Down3 SP 737

l20 = 0
grEV = pressing
stEV = 1
hPos = down
st = d2
stGREV = 0
geEV = pressing
now = 201
lHPCh = 0
sDOp = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
stGEEV = 0
dOp = {(forward 7→ y),(left 7→ y),(right 7→ y)}

M. Cristiá 169

Down3 SP 749 TCASE
Down3 SP 749

l20 = 0
grEV = pressing
stEV = 1
hPos = down
st = d2
stGREV = 1
geEV = pressing
now = 201
lHPCh = 0
sDOp = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
stGEEV = 0
dOp = {(forward 7→ y),(left 7→ y),(right 7→ y)}

Down3 SP 750 TCASE
Down3 SP 750

l20 = 0
grEV = pressing
stEV = 1
hPos = down
st = d2
stGREV = 101
geEV = pressing
now = 201
lHPCh = 0
sDOp = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
stGEEV = 0
dOp = {(forward 7→ y),(left 7→ y),(right 7→ y)}

170 Z Specification of the Landing Gear System

Down3 DNF 2 TCASE
Down3 DNF 2

l20 = 0
grEV = pressing
stEV = 0
hPos = down
st = d2
stGREV = 0
geEV = pressing
now = 200
lHPCh = 0
sDOp = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
stGEEV = 0
dOp = {(forward 7→ y),(left 7→ y),(right 7→ y)}

Down3 DNF 3 TCASE
Down3 DNF 3

l20 = 0
grEV = pressing
stEV = 0
hPos = up
st = d2
stGREV = 0
geEV = pressing
now = 0
lHPCh = 0
sDOp = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
stGEEV = 0
dOp = {(forward 7→ y),(left 7→ y),(right 7→ y)}

M. Cristiá 171

Down3 DNF 4 TCASE
Down3 DNF 4

l20 = 0
grEV = pressing
stEV = 0
hPos = down
st = d2
stGREV = 0
geEV = pressing
now = 0
lHPCh = 0
sDOp = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
stGEEV = 0
dOp = {(forward 7→ y),(left 7→ y),(right 7→ y)}

Down3 DNF 5 TCASE
Down3 DNF 5

l20 = 0
grEV = pressing
stEV = 0
hPos = down
st = init
stGREV = 0
geEV = pressing
now = 0
lHPCh = 0
sDOp = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
stGEEV = 0
dOp = {(forward 7→ n),(left 7→ y),(right 7→ y)}

172 Z Specification of the Landing Gear System

Down3 DNF 6 TCASE
Down3 DNF 6

l20 = 0
grEV = pressing
stEV = 0
hPos = down
st = init
stGREV = 0
geEV = pressing
now = 0
lHPCh = 0
sDOp = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
stGEEV = 0
dOp = {(forward 7→ y),(left 7→ y),(right 7→ y)}

Down3 DNF 7 TCASE
Down3 DNF 7

l20 = 0
grEV = pressing
stEV = 0
hPos = down
st = init
stGREV = 1
geEV = pressing
now = 0
lHPCh = 0
sDOp = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
stGEEV = 0
dOp = {(forward 7→ y),(left 7→ y),(right 7→ y)}

Down2 SP 335 TCASE
Down2 SP 335

l20 = 0
doEV = pressing
stEV = 0
hPos = down
st = d1
stDCEV = 0
now = 201
dcEV = pressing
stDOEV = 0
lHPCh = 0

M. Cristiá 173

Down2 SP 347 TCASE
Down2 SP 347

l20 = 0
doEV = pressing
stEV = 0
hPos = down
st = d1
stDCEV = 1
now = 201
dcEV = pressing
stDOEV = 0
lHPCh = 0

Down2 SP 348 TCASE
Down2 SP 348

l20 = 0
doEV = pressing
stEV = 0
hPos = down
st = d1
stDCEV = 101
now = 201
dcEV = pressing
stDOEV = 0
lHPCh = 0

Down2 SP 365 TCASE
Down2 SP 365

l20 = 0
doEV = pressing
stEV = 0
hPos = down
st = d1
stDCEV = 0
now = 200
dcEV = pressing
stDOEV = 0
lHPCh = 0

174 Z Specification of the Landing Gear System

Down2 SP 377 TCASE
Down2 SP 377

l20 = 0
doEV = pressing
stEV = 0
hPos = down
st = d1
stDCEV = 1
now = 200
dcEV = pressing
stDOEV = 0
lHPCh = 0

Down2 SP 378 TCASE
Down2 SP 378

l20 = 0
doEV = pressing
stEV = 0
hPos = down
st = d1
stDCEV = 100
now = 200
dcEV = pressing
stDOEV = 0
lHPCh = 0

Down2 SP 707 TCASE
Down2 SP 707

l20 = 0
doEV = pressing
stEV = 1
hPos = down
st = d1
stDCEV = 0
now = 202
dcEV = pressing
stDOEV = 0
lHPCh = 0

M. Cristiá 175

Down2 SP 719 TCASE
Down2 SP 719

l20 = 0
doEV = pressing
stEV = 1
hPos = down
st = d1
stDCEV = 1
now = 202
dcEV = pressing
stDOEV = 0
lHPCh = 0

Down2 SP 720 TCASE
Down2 SP 720

l20 = 0
doEV = pressing
stEV = 1
hPos = down
st = d1
stDCEV = 102
now = 202
dcEV = pressing
stDOEV = 0
lHPCh = 0

Down2 SP 737 TCASE
Down2 SP 737

l20 = 0
doEV = pressing
stEV = 1
hPos = down
st = d1
stDCEV = 0
now = 201
dcEV = pressing
stDOEV = 0
lHPCh = 0

176 Z Specification of the Landing Gear System

Down2 SP 749 TCASE
Down2 SP 749

l20 = 0
doEV = pressing
stEV = 1
hPos = down
st = d1
stDCEV = 1
now = 201
dcEV = pressing
stDOEV = 0
lHPCh = 0

Down2 SP 750 TCASE
Down2 SP 750

l20 = 0
doEV = pressing
stEV = 1
hPos = down
st = d1
stDCEV = 101
now = 201
dcEV = pressing
stDOEV = 0
lHPCh = 0

Down2 DNF 2 TCASE
Down2 DNF 2

l20 = 0
doEV = pressing
stEV = 0
hPos = down
st = d1
stDCEV = 0
now = 200
dcEV = pressing
stDOEV = 0
lHPCh = 0

M. Cristiá 177

Down2 DNF 3 TCASE
Down2 DNF 3

l20 = 0
doEV = pressing
stEV = 0
hPos = up
st = d1
stDCEV = 0
now = 0
dcEV = pressing
stDOEV = 0
lHPCh = 0

Down2 DNF 4 TCASE
Down2 DNF 4

l20 = 0
doEV = pressing
stEV = 0
hPos = down
st = init
stDCEV = 0
now = 0
dcEV = pressing
stDOEV = 0
lHPCh = 0

Down2 DNF 5 TCASE
Down2 DNF 5

l20 = 0
doEV = pressing
stEV = 0
hPos = down
st = init
stDCEV = 0
now = 0
dcEV = pressing
stDOEV = 0
lHPCh = 0

178 Z Specification of the Landing Gear System

Down2 DNF 6 TCASE
Down2 DNF 6

l20 = 0
doEV = pressing
stEV = 0
hPos = down
st = init
stDCEV = 1
now = 0
dcEV = pressing
stDOEV = 0
lHPCh = 0

GearsLockedDown DNF 1 TCASE
GearsLockedDown DNF 1

gExt = {(forward 7→ y),(left 7→ y),(right 7→ y)}
sGExt = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
gml = on
gldl = on

GearsLockedDown DNF 2 TCASE
GearsLockedDown DNF 2

gExt = {(forward 7→ n),(left 7→ y),(right 7→ y)}
sGExt = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
gml = on
gldl = on

Down8 SP 17 TCASE
Down8 SP 17

l20 = 0
hPos = down
st = d7
gEV = pressing
stGEV = 0
spEV = 0
spGEV = 0
now = 1001
lHPCh = 0

M. Cristiá 179

Down8 SP 18 TCASE
Down8 SP 18

l20 = 0
hPos = down
st = d7
gEV = pressing
stGEV = 0
spEV = 0
spGEV = 0
now = 1000
lHPCh = 0

Down8 SP 29 TCASE
Down8 SP 29

l20 = 0
hPos = down
st = d7
gEV = pressing
stGEV = 0
spEV = 1
spGEV = 0
now = 1002
lHPCh = 0

Down8 SP 30 TCASE
Down8 SP 30

l20 = 0
hPos = down
st = d7
gEV = pressing
stGEV = 0
spEV = 1
spGEV = 0
now = 1001
lHPCh = 0

180 Z Specification of the Landing Gear System

Down8 DNF 2 TCASE
Down8 DNF 2

l20 = 0
hPos = up
st = d7
gEV = pressing
stGEV = 0
spEV = 0
spGEV = 0
now = 0
lHPCh = 0

Down8 DNF 3 TCASE
Down8 DNF 3

l20 = 0
hPos = down
st = init
gEV = pressing
stGEV = 0
spEV = 0
spGEV = 0
now = 0
lHPCh = 0

Down8 DNF 4 TCASE
Down8 DNF 4

l20 = 0
hPos = down
st = init
gEV = pressing
stGEV = 0
spEV = 0
spGEV = 0
now = 0
lHPCh = 0

ReadHydraulicCircuit DNF 3 TCASE
ReadHydraulicCircuit DNF 3

hc = y
lgsfl = on
sHC = /0
v? = {(s1 7→ y),(s2 7→ y),(s3 7→ y)}

M. Cristiá 181

ReadHydraulicCircuit DNF 6 TCASE
ReadHydraulicCircuit DNF 6

hc = y
lgsfl = on
sHC = {s1,s2,s3}
v? = {(s1 7→ y),(s2 7→ y),(s3 7→ n)}

ReadHydraulicCircuit DNF 7 TCASE
ReadHydraulicCircuit DNF 7

hc = y
lgsfl = on
sHC = {s1,s2,s3}
v? = {(s1 7→ y),(s2 7→ n),(s3 7→ n)}

ReadHydraulicCircuit DNF 8 TCASE
ReadHydraulicCircuit DNF 8

hc = y
lgsfl = on
sHC = {s1,s2,s3}
v? = {(s1 7→ y),(s2 7→ y),(s3 7→ n)}

ReadHydraulicCircuit DNF 11 TCASE
ReadHydraulicCircuit DNF 11

hc = y
lgsfl = on
sHC = /0
v? = {(s1 7→ y),(s2 7→ y),(s3 7→ y)}

ReadHydraulicCircuit DNF 12 TCASE
ReadHydraulicCircuit DNF 12

hc = y
lgsfl = on
sHC = /0
v? = {(s1 7→ y),(s2 7→ y),(s3 7→ y)}

182 Z Specification of the Landing Gear System

ReadDoorsClosing FT 7 TCASE
ReadDoorsClosing FT 7

lgsfl = on
sDCl = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
dCl = {(forward 7→ y),(left 7→ y),(right 7→ y)}
g? = forward
v? = {(s1 7→ y),(s2 7→ y),(s3 7→ y)}

ReadDoorsClosing FT 8 TCASE
ReadDoorsClosing FT 8

lgsfl = on
sDCl = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
dCl = {(forward 7→ y),(left 7→ y),(right 7→ y)}
g? = left
v? = {(s1 7→ y),(s2 7→ y),(s3 7→ y)}

ReadDoorsClosing FT 9 TCASE
ReadDoorsClosing FT 9

lgsfl = on
sDCl = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
dCl = {(forward 7→ y),(left 7→ y),(right 7→ y)}
g? = right
v? = {(s1 7→ y),(s2 7→ y),(s3 7→ y)}

ReadDoorsClosing FT 13 TCASE
ReadDoorsClosing FT 13

lgsfl = on
sDCl = {(forward 7→ {s1,s2,s3}),(left 7→ {s1}),(right 7→ {s1})}
dCl = {(forward 7→ y),(left 7→ y),(right 7→ y)}
g? = forward
v? = {(s1 7→ y),(s2 7→ y),(s3 7→ n)}

ReadDoorsClosing FT 14 TCASE
ReadDoorsClosing FT 14

lgsfl = on
sDCl = {(forward 7→ {s1}),(left 7→ {s1,s2,s3}),(right 7→ {s1})}
dCl = {(forward 7→ y),(left 7→ y),(right 7→ y)}
g? = left
v? = {(s1 7→ y),(s2 7→ y),(s3 7→ n)}

M. Cristiá 183

ReadDoorsClosing FT 15 TCASE
ReadDoorsClosing FT 15

lgsfl = on
sDCl = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1,s2,s3})}
dCl = {(forward 7→ y),(left 7→ y),(right 7→ y)}
g? = right
v? = {(s1 7→ y),(s2 7→ y),(s3 7→ n)}

ReadDoorsClosing FT 16 TCASE
ReadDoorsClosing FT 16

lgsfl = on
sDCl = {(forward 7→ {s1,s2,s3}),(left 7→ {s1}),(right 7→ {s1})}
dCl = {(forward 7→ y),(left 7→ y),(right 7→ y)}
g? = forward
v? = {(s1 7→ y),(s2 7→ n),(s3 7→ n)}

ReadDoorsClosing FT 17 TCASE
ReadDoorsClosing FT 17

lgsfl = on
sDCl = {(forward 7→ {s1}),(left 7→ {s1,s2,s3}),(right 7→ {s1})}
dCl = {(forward 7→ y),(left 7→ y),(right 7→ y)}
g? = left
v? = {(s1 7→ y),(s2 7→ n),(s3 7→ n)}

ReadDoorsClosing FT 18 TCASE
ReadDoorsClosing FT 18

lgsfl = on
sDCl = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1,s2,s3})}
dCl = {(forward 7→ y),(left 7→ y),(right 7→ y)}
g? = right
v? = {(s1 7→ y),(s2 7→ n),(s3 7→ n)}

ReadDoorsClosing FT 19 TCASE
ReadDoorsClosing FT 19

lgsfl = on
sDCl = {(forward 7→ {s1,s2,s3}),(left 7→ {s1}),(right 7→ {s1})}
dCl = {(forward 7→ y),(left 7→ y),(right 7→ y)}
g? = forward
v? = {(s1 7→ y),(s2 7→ y),(s3 7→ n)}

184 Z Specification of the Landing Gear System

ReadDoorsClosing FT 20 TCASE
ReadDoorsClosing FT 20

lgsfl = on
sDCl = {(forward 7→ {s1}),(left 7→ {s1,s2,s3}),(right 7→ {s1})}
dCl = {(forward 7→ y),(left 7→ y),(right 7→ y)}
g? = left
v? = {(s1 7→ y),(s2 7→ y),(s3 7→ n)}

ReadDoorsClosing FT 21 TCASE
ReadDoorsClosing FT 21

lgsfl = on
sDCl = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1,s2,s3})}
dCl = {(forward 7→ y),(left 7→ y),(right 7→ y)}
g? = right
v? = {(s1 7→ y),(s2 7→ y),(s3 7→ n)}

ReadDoorsClosing FT 28 TCASE
ReadDoorsClosing FT 28

lgsfl = on
sDCl = {(forward 7→ /0),(left 7→ {s1}),(right 7→ {s1})}
dCl = {(forward 7→ y),(left 7→ y),(right 7→ y)}
g? = forward
v? = {(s1 7→ y),(s2 7→ y),(s3 7→ y)}

ReadDoorsClosing FT 29 TCASE
ReadDoorsClosing FT 29

lgsfl = on
sDCl = {(forward 7→ {s1}),(left 7→ /0),(right 7→ {s1})}
dCl = {(forward 7→ y),(left 7→ y),(right 7→ y)}
g? = left
v? = {(s1 7→ y),(s2 7→ y),(s3 7→ y)}

ReadDoorsClosing FT 30 TCASE
ReadDoorsClosing FT 30

lgsfl = on
sDCl = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ /0)}
dCl = {(forward 7→ y),(left 7→ y),(right 7→ y)}
g? = right
v? = {(s1 7→ y),(s2 7→ y),(s3 7→ y)}

M. Cristiá 185

ReadDoorsClosing FT 31 TCASE
ReadDoorsClosing FT 31

lgsfl = on
sDCl = {(forward 7→ /0),(left 7→ {s1}),(right 7→ {s1})}
dCl = {(forward 7→ y),(left 7→ y),(right 7→ y)}
g? = forward
v? = {(s1 7→ y),(s2 7→ y),(s3 7→ y)}

ReadDoorsClosing FT 32 TCASE
ReadDoorsClosing FT 32

lgsfl = on
sDCl = {(forward 7→ {s1}),(left 7→ /0),(right 7→ {s1})}
dCl = {(forward 7→ y),(left 7→ y),(right 7→ y)}
g? = left
v? = {(s1 7→ y),(s2 7→ y),(s3 7→ y)}

ReadDoorsClosing FT 33 TCASE
ReadDoorsClosing FT 33

lgsfl = on
sDCl = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ /0)}
dCl = {(forward 7→ y),(left 7→ y),(right 7→ y)}
g? = right
v? = {(s1 7→ y),(s2 7→ y),(s3 7→ y)}

Down7 SP 17 TCASE
Down7 SP 17

l20 = 0
hPos = down
st = d6
sDCl = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
dCl = {(forward 7→ y),(left 7→ y),(right 7→ y)}
spEV = 0
stDCEV = 0
now = 1001
dcEV = pressing
lHPCh = 0

186 Z Specification of the Landing Gear System

Down7 SP 18 TCASE
Down7 SP 18

l20 = 0
hPos = down
st = d6
sDCl = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
dCl = {(forward 7→ y),(left 7→ y),(right 7→ y)}
spEV = 0
stDCEV = 0
now = 1000
dcEV = pressing
lHPCh = 0

Down7 SP 29 TCASE
Down7 SP 29

l20 = 0
hPos = down
st = d6
sDCl = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
dCl = {(forward 7→ y),(left 7→ y),(right 7→ y)}
spEV = 1
stDCEV = 0
now = 1002
dcEV = pressing
lHPCh = 0

Down7 SP 30 TCASE
Down7 SP 30

l20 = 0
hPos = down
st = d6
sDCl = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
dCl = {(forward 7→ y),(left 7→ y),(right 7→ y)}
spEV = 1
stDCEV = 0
now = 1001
dcEV = pressing
lHPCh = 0

M. Cristiá 187

Down7 DNF 2 TCASE
Down7 DNF 2

l20 = 0
hPos = up
st = d6
sDCl = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
dCl = {(forward 7→ y),(left 7→ y),(right 7→ y)}
spEV = 0
stDCEV = 0
now = 0
dcEV = pressing
lHPCh = 0

Down7 DNF 3 TCASE
Down7 DNF 3

l20 = 0
hPos = down
st = init
sDCl = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
dCl = {(forward 7→ y),(left 7→ y),(right 7→ y)}
spEV = 0
stDCEV = 0
now = 0
dcEV = pressing
lHPCh = 0

Down7 DNF 4 TCASE
Down7 DNF 4

l20 = 0
hPos = down
st = init
sDCl = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
dCl = {(forward 7→ n),(left 7→ y),(right 7→ y)}
spEV = 0
stDCEV = 0
now = 0
dcEV = pressing
lHPCh = 0

188 Z Specification of the Landing Gear System

Down7 DNF 5 TCASE
Down7 DNF 5

l20 = 0
hPos = down
st = init
sDCl = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
dCl = {(forward 7→ y),(left 7→ y),(right 7→ y)}
spEV = 0
stDCEV = 0
now = 0
dcEV = pressing
lHPCh = 0

Down6 SP 335 TCASE
Down6 SP 335

l20 = 0
doEV = pressing
stEV = 0
hPos = down
st = d5
stDCEV = 0
now = 201
dcEV = pressing
stDOEV = 0
lHPCh = 0

Down6 SP 347 TCASE
Down6 SP 347

l20 = 0
doEV = pressing
stEV = 0
hPos = down
st = d5
stDCEV = 0
now = 201
dcEV = pressing
stDOEV = 1
lHPCh = 0

M. Cristiá 189

Down6 SP 348 TCASE
Down6 SP 348

l20 = 0
doEV = pressing
stEV = 0
hPos = down
st = d5
stDCEV = 0
now = 201
dcEV = pressing
stDOEV = 101
lHPCh = 0

Down6 SP 365 TCASE
Down6 SP 365

l20 = 0
doEV = pressing
stEV = 0
hPos = down
st = d5
stDCEV = 0
now = 200
dcEV = pressing
stDOEV = 0
lHPCh = 0

Down6 SP 377 TCASE
Down6 SP 377

l20 = 0
doEV = pressing
stEV = 0
hPos = down
st = d5
stDCEV = 0
now = 200
dcEV = pressing
stDOEV = 1
lHPCh = 0

190 Z Specification of the Landing Gear System

Down6 SP 378 TCASE
Down6 SP 378

l20 = 0
doEV = pressing
stEV = 0
hPos = down
st = d5
stDCEV = 0
now = 200
dcEV = pressing
stDOEV = 100
lHPCh = 0

Down6 SP 707 TCASE
Down6 SP 707

l20 = 0
doEV = pressing
stEV = 1
hPos = down
st = d5
stDCEV = 0
now = 202
dcEV = pressing
stDOEV = 0
lHPCh = 0

Down6 SP 719 TCASE
Down6 SP 719

l20 = 0
doEV = pressing
stEV = 1
hPos = down
st = d5
stDCEV = 0
now = 202
dcEV = pressing
stDOEV = 1
lHPCh = 0

M. Cristiá 191

Down6 SP 720 TCASE
Down6 SP 720

l20 = 0
doEV = pressing
stEV = 1
hPos = down
st = d5
stDCEV = 0
now = 202
dcEV = pressing
stDOEV = 102
lHPCh = 0

Down6 SP 737 TCASE
Down6 SP 737

l20 = 0
doEV = pressing
stEV = 1
hPos = down
st = d5
stDCEV = 0
now = 201
dcEV = pressing
stDOEV = 0
lHPCh = 0

Down6 SP 749 TCASE
Down6 SP 749

l20 = 0
doEV = pressing
stEV = 1
hPos = down
st = d5
stDCEV = 0
now = 201
dcEV = pressing
stDOEV = 1
lHPCh = 0

192 Z Specification of the Landing Gear System

Down6 SP 750 TCASE
Down6 SP 750

l20 = 0
doEV = pressing
stEV = 1
hPos = down
st = d5
stDCEV = 0
now = 201
dcEV = pressing
stDOEV = 101
lHPCh = 0

Down6 DNF 2 TCASE
Down6 DNF 2

l20 = 0
doEV = pressing
stEV = 0
hPos = up
st = d5
stDCEV = 0
now = 0
dcEV = pressing
stDOEV = 0
lHPCh = 0

Down6 DNF 3 TCASE
Down6 DNF 3

l20 = 0
doEV = pressing
stEV = 0
hPos = down
st = init
stDCEV = 0
now = 0
dcEV = pressing
stDOEV = 0
lHPCh = 0

M. Cristiá 193

Down6 DNF 4 TCASE
Down6 DNF 4

l20 = 0
doEV = pressing
stEV = 0
hPos = down
st = init
stDCEV = 0
now = 0
dcEV = pressing
stDOEV = 0
lHPCh = 0

Down6 DNF 5 TCASE
Down6 DNF 5

l20 = 0
doEV = pressing
stEV = 0
hPos = down
st = init
stDCEV = 0
now = 0
dcEV = pressing
stDOEV = 0
lHPCh = 0

GearsMotionM SP 47 TCASE
GearsMotionM SP 47

grEV = pressing
gExt = {(forward 7→ y),(left 7→ y),(right 7→ y)}
sGExt = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
lgsfl = on
sGRec = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
stGREV = 0
geEV = pressing
now = 7001
gRec = {(forward 7→ y),(left 7→ y),(right 7→ y)}
stGEEV = 0

194 Z Specification of the Landing Gear System

GearsMotionM SP 48 TCASE
GearsMotionM SP 48

grEV = pressing
gExt = {(forward 7→ y),(left 7→ y),(right 7→ y)}
sGExt = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
lgsfl = on
sGRec = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
stGREV = 0
geEV = pressing
now = 7000
gRec = {(forward 7→ y),(left 7→ y),(right 7→ y)}
stGEEV = 0

GearsMotionM SP 59 TCASE
GearsMotionM SP 59

grEV = pressing
gExt = {(forward 7→ y),(left 7→ y),(right 7→ y)}
sGExt = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
lgsfl = on
sGRec = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
stGREV = 1
geEV = pressing
now = 7002
gRec = {(forward 7→ y),(left 7→ y),(right 7→ y)}
stGEEV = 0

GearsMotionM SP 60 TCASE
GearsMotionM SP 60

grEV = pressing
gExt = {(forward 7→ y),(left 7→ y),(right 7→ y)}
sGExt = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
lgsfl = on
sGRec = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
stGREV = 1
geEV = pressing
now = 7001
gRec = {(forward 7→ y),(left 7→ y),(right 7→ y)}
stGEEV = 0

M. Cristiá 195

GearsMotionM SP 17 TCASE
GearsMotionM SP 17

grEV = pressing
gExt = {(forward 7→ y),(left 7→ y),(right 7→ y)}
sGExt = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
lgsfl = on
sGRec = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
stGREV = 0
geEV = pressing
now = 10001
gRec = {(forward 7→ n),(left 7→ y),(right 7→ y)}
stGEEV = 0

GearsMotionM SP 18 TCASE
GearsMotionM SP 18

grEV = pressing
gExt = {(forward 7→ y),(left 7→ y),(right 7→ y)}
sGExt = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
lgsfl = on
sGRec = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
stGREV = 0
geEV = pressing
now = 10000
gRec = {(forward 7→ n),(left 7→ y),(right 7→ y)}
stGEEV = 0

GearsMotionM SP 29 TCASE
GearsMotionM SP 29

grEV = pressing
gExt = {(forward 7→ y),(left 7→ y),(right 7→ y)}
sGExt = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
lgsfl = on
sGRec = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
stGREV = 1
geEV = pressing
now = 10002
gRec = {(forward 7→ n),(left 7→ y),(right 7→ y)}
stGEEV = 0

196 Z Specification of the Landing Gear System

GearsMotionM SP 30 TCASE
GearsMotionM SP 30

grEV = pressing
gExt = {(forward 7→ y),(left 7→ y),(right 7→ y)}
sGExt = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
lgsfl = on
sGRec = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
stGREV = 1
geEV = pressing
now = 10001
gRec = {(forward 7→ n),(left 7→ y),(right 7→ y)}
stGEEV = 0

GearsMotionM SP 107 TCASE
GearsMotionM SP 107

grEV = pressing
gExt = {(forward 7→ y),(left 7→ y),(right 7→ y)}
sGExt = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
lgsfl = on
sGRec = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
stGREV = 0
geEV = pressing
now = 7001
gRec = {(forward 7→ y),(left 7→ y),(right 7→ y)}
stGEEV = 0

GearsMotionM SP 108 TCASE
GearsMotionM SP 108

grEV = pressing
gExt = {(forward 7→ y),(left 7→ y),(right 7→ y)}
sGExt = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
lgsfl = on
sGRec = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
stGREV = 0
geEV = pressing
now = 7000
gRec = {(forward 7→ y),(left 7→ y),(right 7→ y)}
stGEEV = 0

M. Cristiá 197

GearsMotionM SP 119 TCASE
GearsMotionM SP 119

grEV = pressing
gExt = {(forward 7→ y),(left 7→ y),(right 7→ y)}
sGExt = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
lgsfl = on
sGRec = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
stGREV = 0
geEV = pressing
now = 7002
gRec = {(forward 7→ y),(left 7→ y),(right 7→ y)}
stGEEV = 1

GearsMotionM SP 120 TCASE
GearsMotionM SP 120

grEV = pressing
gExt = {(forward 7→ y),(left 7→ y),(right 7→ y)}
sGExt = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
lgsfl = on
sGRec = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
stGREV = 0
geEV = pressing
now = 7001
gRec = {(forward 7→ y),(left 7→ y),(right 7→ y)}
stGEEV = 1

GearsMotionM SP 77 TCASE
GearsMotionM SP 77

grEV = pressing
gExt = {(forward 7→ n),(left 7→ y),(right 7→ y)}
sGExt = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
lgsfl = on
sGRec = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
stGREV = 0
geEV = pressing
now = 10001
gRec = {(forward 7→ y),(left 7→ y),(right 7→ y)}
stGEEV = 0

198 Z Specification of the Landing Gear System

GearsMotionM SP 78 TCASE
GearsMotionM SP 78

grEV = pressing
gExt = {(forward 7→ n),(left 7→ y),(right 7→ y)}
sGExt = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
lgsfl = on
sGRec = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
stGREV = 0
geEV = pressing
now = 10000
gRec = {(forward 7→ y),(left 7→ y),(right 7→ y)}
stGEEV = 0

GearsMotionM SP 89 TCASE
GearsMotionM SP 89

grEV = pressing
gExt = {(forward 7→ n),(left 7→ y),(right 7→ y)}
sGExt = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
lgsfl = on
sGRec = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
stGREV = 0
geEV = pressing
now = 10002
gRec = {(forward 7→ y),(left 7→ y),(right 7→ y)}
stGEEV = 1

GearsMotionM SP 90 TCASE
GearsMotionM SP 90

grEV = pressing
gExt = {(forward 7→ n),(left 7→ y),(right 7→ y)}
sGExt = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
lgsfl = on
sGRec = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
stGREV = 0
geEV = pressing
now = 10001
gRec = {(forward 7→ y),(left 7→ y),(right 7→ y)}
stGEEV = 1

M. Cristiá 199

GearsMotionM DNF 5 TCASE
GearsMotionM DNF 5

grEV = pressing
gExt = {(forward 7→ y),(left 7→ y),(right 7→ y)}
sGExt = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
lgsfl = on
sGRec = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
stGREV = 0
geEV = pressing
now = 0
gRec = {(forward 7→ n),(left 7→ n),(right 7→ n)}
stGEEV = 0

GearsMotionM DNF 6 TCASE
GearsMotionM DNF 6

grEV = pressing
gExt = {(forward 7→ y),(left 7→ y),(right 7→ y)}
sGExt = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
lgsfl = on
sGRec = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
stGREV = 0
geEV = pressing
now = 0
gRec = {(forward 7→ y),(left 7→ y),(right 7→ y)}
stGEEV = 0

GearsMotionM DNF 7 TCASE
GearsMotionM DNF 7

grEV = pressing
gExt = {(forward 7→ y),(left 7→ y),(right 7→ y)}
sGExt = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
lgsfl = on
sGRec = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
stGREV = 0
geEV = pressing
now = 0
gRec = {(forward 7→ y),(left 7→ y),(right 7→ y)}
stGEEV = 0

200 Z Specification of the Landing Gear System

GearsMotionM DNF 8 TCASE
GearsMotionM DNF 8

grEV = pressing
gExt = {(forward 7→ y),(left 7→ y),(right 7→ y)}
sGExt = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
lgsfl = on
sGRec = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
stGREV = 0
geEV = pressing
now = 0
gRec = {(forward 7→ y),(left 7→ y),(right 7→ y)}
stGEEV = 0

GearsMotionM DNF 9 TCASE
GearsMotionM DNF 9

grEV = pressing
gExt = {(forward 7→ n),(left 7→ n),(right 7→ n)}
sGExt = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
lgsfl = on
sGRec = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
stGREV = 0
geEV = pressing
now = 0
gRec = {(forward 7→ y),(left 7→ y),(right 7→ y)}
stGEEV = 0

GearsMotionM DNF 10 TCASE
GearsMotionM DNF 10

grEV = pressing
gExt = {(forward 7→ y),(left 7→ y),(right 7→ y)}
sGExt = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
lgsfl = on
sGRec = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
stGREV = 0
geEV = pressing
now = 0
gRec = {(forward 7→ y),(left 7→ y),(right 7→ y)}
stGEEV = 0

M. Cristiá 201

GearsMotionM DNF 11 TCASE
GearsMotionM DNF 11

grEV = pressing
gExt = {(forward 7→ y),(left 7→ y),(right 7→ y)}
sGExt = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
lgsfl = on
sGRec = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
stGREV = 0
geEV = pressing
now = 0
gRec = {(forward 7→ y),(left 7→ y),(right 7→ y)}
stGEEV = 0

GearsMotionM DNF 12 TCASE
GearsMotionM DNF 12

grEV = pressing
gExt = {(forward 7→ y),(left 7→ y),(right 7→ y)}
sGExt = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
lgsfl = on
sGRec = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
stGREV = 0
geEV = pressing
now = 0
gRec = {(forward 7→ y),(left 7→ y),(right 7→ y)}
stGEEV = 0

DoorsMotionM SP 77 TCASE
DoorsMotionM SP 77

doEV = pressing
lgsfl = on
sDCl = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
dCl = {(forward 7→ y),(left 7→ y),(right 7→ y)}
stDCEV = 0
now = 7001
dcEV = pressing
stDOEV = 0
sDOp = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
dOp = {(forward 7→ y),(left 7→ y),(right 7→ y)}

202 Z Specification of the Landing Gear System

DoorsMotionM SP 78 TCASE
DoorsMotionM SP 78

doEV = pressing
lgsfl = on
sDCl = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
dCl = {(forward 7→ y),(left 7→ y),(right 7→ y)}
stDCEV = 0
now = 7000
dcEV = pressing
stDOEV = 0
sDOp = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
dOp = {(forward 7→ y),(left 7→ y),(right 7→ y)}

DoorsMotionM SP 89 TCASE
DoorsMotionM SP 89

doEV = pressing
lgsfl = on
sDCl = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
dCl = {(forward 7→ y),(left 7→ y),(right 7→ y)}
stDCEV = 0
now = 7002
dcEV = pressing
stDOEV = 1
sDOp = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
dOp = {(forward 7→ y),(left 7→ y),(right 7→ y)}

DoorsMotionM SP 90 TCASE
DoorsMotionM SP 90

doEV = pressing
lgsfl = on
sDCl = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
dCl = {(forward 7→ y),(left 7→ y),(right 7→ y)}
stDCEV = 0
now = 7001
dcEV = pressing
stDOEV = 1
sDOp = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
dOp = {(forward 7→ y),(left 7→ y),(right 7→ y)}

M. Cristiá 203

DoorsMotionM SP 47 TCASE
DoorsMotionM SP 47

doEV = pressing
lgsfl = on
sDCl = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
dCl = {(forward 7→ y),(left 7→ y),(right 7→ y)}
stDCEV = 0
now = 7001
dcEV = pressing
stDOEV = 0
sDOp = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
dOp = {(forward 7→ n),(left 7→ y),(right 7→ y)}

DoorsMotionM SP 48 TCASE
DoorsMotionM SP 48

doEV = pressing
lgsfl = on
sDCl = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
dCl = {(forward 7→ y),(left 7→ y),(right 7→ y)}
stDCEV = 0
now = 7000
dcEV = pressing
stDOEV = 0
sDOp = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
dOp = {(forward 7→ n),(left 7→ y),(right 7→ y)}

DoorsMotionM SP 59 TCASE
DoorsMotionM SP 59

doEV = pressing
lgsfl = on
sDCl = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
dCl = {(forward 7→ y),(left 7→ y),(right 7→ y)}
stDCEV = 0
now = 7002
dcEV = pressing
stDOEV = 1
sDOp = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
dOp = {(forward 7→ n),(left 7→ y),(right 7→ y)}

204 Z Specification of the Landing Gear System

DoorsMotionM SP 60 TCASE
DoorsMotionM SP 60

doEV = pressing
lgsfl = on
sDCl = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
dCl = {(forward 7→ y),(left 7→ y),(right 7→ y)}
stDCEV = 0
now = 7001
dcEV = pressing
stDOEV = 1
sDOp = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
dOp = {(forward 7→ n),(left 7→ y),(right 7→ y)}

DoorsMotionM SP 17 TCASE
DoorsMotionM SP 17

doEV = pressing
lgsfl = on
sDCl = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
dCl = {(forward 7→ y),(left 7→ y),(right 7→ y)}
stDCEV = 0
now = 7001
dcEV = pressing
stDOEV = 0
sDOp = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
dOp = {(forward 7→ y),(left 7→ y),(right 7→ y)}

DoorsMotionM SP 18 TCASE
DoorsMotionM SP 18

doEV = pressing
lgsfl = on
sDCl = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
dCl = {(forward 7→ y),(left 7→ y),(right 7→ y)}
stDCEV = 0
now = 7000
dcEV = pressing
stDOEV = 0
sDOp = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
dOp = {(forward 7→ y),(left 7→ y),(right 7→ y)}

M. Cristiá 205

DoorsMotionM SP 29 TCASE
DoorsMotionM SP 29

doEV = pressing
lgsfl = on
sDCl = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
dCl = {(forward 7→ y),(left 7→ y),(right 7→ y)}
stDCEV = 1
now = 7002
dcEV = pressing
stDOEV = 0
sDOp = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
dOp = {(forward 7→ y),(left 7→ y),(right 7→ y)}

DoorsMotionM SP 30 TCASE
DoorsMotionM SP 30

doEV = pressing
lgsfl = on
sDCl = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
dCl = {(forward 7→ y),(left 7→ y),(right 7→ y)}
stDCEV = 1
now = 7001
dcEV = pressing
stDOEV = 0
sDOp = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
dOp = {(forward 7→ y),(left 7→ y),(right 7→ y)}

DoorsMotionM SP 107 TCASE
DoorsMotionM SP 107

doEV = pressing
lgsfl = on
sDCl = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
dCl = {(forward 7→ n),(left 7→ y),(right 7→ y)}
stDCEV = 0
now = 7001
dcEV = pressing
stDOEV = 0
sDOp = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
dOp = {(forward 7→ y),(left 7→ y),(right 7→ y)}

206 Z Specification of the Landing Gear System

DoorsMotionM SP 108 TCASE
DoorsMotionM SP 108

doEV = pressing
lgsfl = on
sDCl = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
dCl = {(forward 7→ n),(left 7→ y),(right 7→ y)}
stDCEV = 0
now = 7000
dcEV = pressing
stDOEV = 0
sDOp = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
dOp = {(forward 7→ y),(left 7→ y),(right 7→ y)}

DoorsMotionM SP 119 TCASE
DoorsMotionM SP 119

doEV = pressing
lgsfl = on
sDCl = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
dCl = {(forward 7→ n),(left 7→ y),(right 7→ y)}
stDCEV = 1
now = 7002
dcEV = pressing
stDOEV = 0
sDOp = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
dOp = {(forward 7→ y),(left 7→ y),(right 7→ y)}

DoorsMotionM SP 120 TCASE
DoorsMotionM SP 120

doEV = pressing
lgsfl = on
sDCl = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
dCl = {(forward 7→ n),(left 7→ y),(right 7→ y)}
stDCEV = 1
now = 7001
dcEV = pressing
stDOEV = 0
sDOp = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
dOp = {(forward 7→ y),(left 7→ y),(right 7→ y)}

M. Cristiá 207

DoorsMotionM DNF 5 TCASE
DoorsMotionM DNF 5

doEV = pressing
lgsfl = on
sDCl = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
dCl = {(forward 7→ n),(left 7→ n),(right 7→ n)}
stDCEV = 0
now = 0
dcEV = pressing
stDOEV = 0
sDOp = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
dOp = {(forward 7→ y),(left 7→ y),(right 7→ y)}

DoorsMotionM DNF 6 TCASE
DoorsMotionM DNF 6

doEV = pressing
lgsfl = on
sDCl = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
dCl = {(forward 7→ y),(left 7→ y),(right 7→ y)}
stDCEV = 0
now = 0
dcEV = pressing
stDOEV = 0
sDOp = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
dOp = {(forward 7→ y),(left 7→ y),(right 7→ y)}

DoorsMotionM DNF 7 TCASE
DoorsMotionM DNF 7

doEV = pressing
lgsfl = on
sDCl = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
dCl = {(forward 7→ y),(left 7→ y),(right 7→ y)}
stDCEV = 0
now = 0
dcEV = pressing
stDOEV = 0
sDOp = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
dOp = {(forward 7→ y),(left 7→ y),(right 7→ y)}

208 Z Specification of the Landing Gear System

DoorsMotionM DNF 8 TCASE
DoorsMotionM DNF 8

doEV = pressing
lgsfl = on
sDCl = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
dCl = {(forward 7→ y),(left 7→ y),(right 7→ y)}
stDCEV = 0
now = 0
dcEV = pressing
stDOEV = 0
sDOp = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
dOp = {(forward 7→ n),(left 7→ n),(right 7→ n)}

DoorsMotionM DNF 9 TCASE
DoorsMotionM DNF 9

doEV = pressing
lgsfl = on
sDCl = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
dCl = {(forward 7→ y),(left 7→ y),(right 7→ y)}
stDCEV = 0
now = 0
dcEV = pressing
stDOEV = 0
sDOp = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
dOp = {(forward 7→ y),(left 7→ y),(right 7→ y)}

DoorsMotionM DNF 10 TCASE
DoorsMotionM DNF 10

doEV = pressing
lgsfl = on
sDCl = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
dCl = {(forward 7→ y),(left 7→ y),(right 7→ y)}
stDCEV = 0
now = 0
dcEV = pressing
stDOEV = 0
sDOp = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
dOp = {(forward 7→ y),(left 7→ y),(right 7→ y)}

M. Cristiá 209

ReadShockAbsorbers FT 7 TCASE
ReadShockAbsorbers FT 7

sSA = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
lgsfl = on
g? = forward
v? = {(s1 7→ y),(s2 7→ y),(s3 7→ y)}
sa = {(forward 7→ y),(left 7→ y),(right 7→ y)}

ReadShockAbsorbers FT 8 TCASE
ReadShockAbsorbers FT 8

sSA = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
lgsfl = on
g? = left
v? = {(s1 7→ y),(s2 7→ y),(s3 7→ y)}
sa = {(forward 7→ y),(left 7→ y),(right 7→ y)}

ReadShockAbsorbers FT 9 TCASE
ReadShockAbsorbers FT 9

sSA = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1})}
lgsfl = on
g? = right
v? = {(s1 7→ y),(s2 7→ y),(s3 7→ y)}
sa = {(forward 7→ y),(left 7→ y),(right 7→ y)}

ReadShockAbsorbers FT 13 TCASE
ReadShockAbsorbers FT 13

sSA = {(forward 7→ {s1,s2,s3}),(left 7→ {s1}),(right 7→ {s1})}
lgsfl = on
g? = forward
v? = {(s1 7→ y),(s2 7→ y),(s3 7→ n)}
sa = {(forward 7→ y),(left 7→ y),(right 7→ y)}

ReadShockAbsorbers FT 14 TCASE
ReadShockAbsorbers FT 14

sSA = {(forward 7→ {s1}),(left 7→ {s1,s2,s3}),(right 7→ {s1})}
lgsfl = on
g? = left
v? = {(s1 7→ y),(s2 7→ y),(s3 7→ n)}
sa = {(forward 7→ y),(left 7→ y),(right 7→ y)}

210 Z Specification of the Landing Gear System

ReadShockAbsorbers FT 15 TCASE
ReadShockAbsorbers FT 15

sSA = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1,s2,s3})}
lgsfl = on
g? = right
v? = {(s1 7→ y),(s2 7→ y),(s3 7→ n)}
sa = {(forward 7→ y),(left 7→ y),(right 7→ y)}

ReadShockAbsorbers FT 16 TCASE
ReadShockAbsorbers FT 16

sSA = {(forward 7→ {s1,s2,s3}),(left 7→ {s1}),(right 7→ {s1})}
lgsfl = on
g? = forward
v? = {(s1 7→ y),(s2 7→ n),(s3 7→ n)}
sa = {(forward 7→ y),(left 7→ y),(right 7→ y)}

ReadShockAbsorbers FT 17 TCASE
ReadShockAbsorbers FT 17

sSA = {(forward 7→ {s1}),(left 7→ {s1,s2,s3}),(right 7→ {s1})}
lgsfl = on
g? = left
v? = {(s1 7→ y),(s2 7→ n),(s3 7→ n)}
sa = {(forward 7→ y),(left 7→ y),(right 7→ y)}

ReadShockAbsorbers FT 18 TCASE
ReadShockAbsorbers FT 18

sSA = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1,s2,s3})}
lgsfl = on
g? = right
v? = {(s1 7→ y),(s2 7→ n),(s3 7→ n)}
sa = {(forward 7→ y),(left 7→ y),(right 7→ y)}

ReadShockAbsorbers FT 19 TCASE
ReadShockAbsorbers FT 19

sSA = {(forward 7→ {s1,s2,s3}),(left 7→ {s1}),(right 7→ {s1})}
lgsfl = on
g? = forward
v? = {(s1 7→ y),(s2 7→ y),(s3 7→ n)}
sa = {(forward 7→ y),(left 7→ y),(right 7→ y)}

M. Cristiá 211

ReadShockAbsorbers FT 20 TCASE
ReadShockAbsorbers FT 20

sSA = {(forward 7→ {s1}),(left 7→ {s1,s2,s3}),(right 7→ {s1})}
lgsfl = on
g? = left
v? = {(s1 7→ y),(s2 7→ y),(s3 7→ n)}
sa = {(forward 7→ y),(left 7→ y),(right 7→ y)}

ReadShockAbsorbers FT 21 TCASE
ReadShockAbsorbers FT 21

sSA = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ {s1,s2,s3})}
lgsfl = on
g? = right
v? = {(s1 7→ y),(s2 7→ y),(s3 7→ n)}
sa = {(forward 7→ y),(left 7→ y),(right 7→ y)}

ReadShockAbsorbers FT 28 TCASE
ReadShockAbsorbers FT 28

sSA = {(forward 7→ /0),(left 7→ {s1}),(right 7→ {s1})}
lgsfl = on
g? = forward
v? = {(s1 7→ y),(s2 7→ y),(s3 7→ y)}
sa = {(forward 7→ y),(left 7→ y),(right 7→ y)}

ReadShockAbsorbers FT 29 TCASE
ReadShockAbsorbers FT 29

sSA = {(forward 7→ {s1}),(left 7→ /0),(right 7→ {s1})}
lgsfl = on
g? = left
v? = {(s1 7→ y),(s2 7→ y),(s3 7→ y)}
sa = {(forward 7→ y),(left 7→ y),(right 7→ y)}

ReadShockAbsorbers FT 30 TCASE
ReadShockAbsorbers FT 30

sSA = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ /0)}
lgsfl = on
g? = right
v? = {(s1 7→ y),(s2 7→ y),(s3 7→ y)}
sa = {(forward 7→ y),(left 7→ y),(right 7→ y)}

212 Z Specification of the Landing Gear System

ReadShockAbsorbers FT 31 TCASE
ReadShockAbsorbers FT 31

sSA = {(forward 7→ /0),(left 7→ {s1}),(right 7→ {s1})}
lgsfl = on
g? = forward
v? = {(s1 7→ y),(s2 7→ y),(s3 7→ y)}
sa = {(forward 7→ y),(left 7→ y),(right 7→ y)}

ReadShockAbsorbers FT 32 TCASE
ReadShockAbsorbers FT 32

sSA = {(forward 7→ {s1}),(left 7→ /0),(right 7→ {s1})}
lgsfl = on
g? = left
v? = {(s1 7→ y),(s2 7→ y),(s3 7→ y)}
sa = {(forward 7→ y),(left 7→ y),(right 7→ y)}

ReadShockAbsorbers FT 33 TCASE
ReadShockAbsorbers FT 33

sSA = {(forward 7→ {s1}),(left 7→ {s1}),(right 7→ /0)}
lgsfl = on
g? = right
v? = {(s1 7→ y),(s2 7→ y),(s3 7→ y)}
sa = {(forward 7→ y),(left 7→ y),(right 7→ y)}

AnalogicalSwitchM SP 29 TCASE
AnalogicalSwitchM SP 29

l20 = 0
hPos = down
lgsfl = on
sAS = /0
now = 1002
lHPCh = 1
as = y

M. Cristiá 213

AnalogicalSwitchM SP 30 TCASE
AnalogicalSwitchM SP 30

l20 = 0
hPos = down
lgsfl = on
sAS = /0
now = 1001
lHPCh = 1
as = y

AnalogicalSwitchM SP 59 TCASE
AnalogicalSwitchM SP 59

l20 = 1
hPos = down
lgsfl = on
sAS = /0
now = 1502
lHPCh = 0
as = n

AnalogicalSwitchM SP 60 TCASE
AnalogicalSwitchM SP 60

l20 = 1
hPos = down
lgsfl = on
sAS = /0
now = 1501
lHPCh = 0
as = n

AnalogicalSwitchM DNF 3 TCASE
AnalogicalSwitchM DNF 3

l20 = 0
hPos = down
lgsfl = on
sAS = /0
now = 0
lHPCh = 0
as = n

214 Z Specification of the Landing Gear System

AnalogicalSwitchM DNF 4 TCASE
AnalogicalSwitchM DNF 4

l20 = 0
hPos = down
lgsfl = on
sAS = /0
now = 0
lHPCh = 0
as = y

AnalogicalSwitchM DNF 5 TCASE
AnalogicalSwitchM DNF 5

l20 = 0
hPos = down
lgsfl = on
sAS = /0
now = 0
lHPCh = 0
as = y

AnalogicalSwitchM DNF 6 TCASE
AnalogicalSwitchM DNF 6

l20 = 0
hPos = down
lgsfl = on
sAS = /0
now = 0
lHPCh = 0
as = y

AnalogicalSwitchM DNF 7 TCASE
AnalogicalSwitchM DNF 7

l20 = 0
hPos = down
lgsfl = on
sAS = /0
now = 0
lHPCh = 0
as = y

M. Cristiá 215

AnalogicalSwitchM DNF 8 TCASE
AnalogicalSwitchM DNF 8

l20 = 0
hPos = down
lgsfl = on
sAS = /0
now = 0
lHPCh = 0
as = y

Valid SP 26 TCASE
Valid SP 26

i? = {(s3 7→ y)}

Valid SP 64 TCASE
Valid SP 64

i? = /0

Valid SP 94 TCASE
Valid SP 94

i? = {(s3 7→ n)}

Down1 SP 17 TCASE
Down1 SP 17

l20 = 0
stEV = 0
hPos = down
st = d0
gEV = pressing
stGEV = 0
spGEV = 0
now = 201
lHPCh = 0

216 Z Specification of the Landing Gear System

Down1 SP 18 TCASE
Down1 SP 18

l20 = 0
stEV = 0
hPos = down
st = d0
gEV = pressing
stGEV = 0
spGEV = 0
now = 200
lHPCh = 0

Down1 SP 29 TCASE
Down1 SP 29

l20 = 0
stEV = 1
hPos = down
st = d0
gEV = pressing
stGEV = 0
spGEV = 0
now = 202
lHPCh = 0

Down1 SP 30 TCASE
Down1 SP 30

l20 = 0
stEV = 1
hPos = down
st = d0
gEV = pressing
stGEV = 0
spGEV = 0
now = 201
lHPCh = 0

M. Cristiá 217

Down1 DNF 2 TCASE
Down1 DNF 2

l20 = 0
stEV = 0
hPos = down
st = d0
gEV = pressing
stGEV = 0
spGEV = 0
now = 0
lHPCh = 0

Down1 DNF 3 TCASE
Down1 DNF 3

l20 = 0
stEV = 0
hPos = down
st = init
gEV = pressing
stGEV = 0
spGEV = 0
now = 0
lHPCh = 0

Down1 DNF 4 TCASE
Down1 DNF 4

l20 = 0
stEV = 0
hPos = up
st = init
gEV = pressing
stGEV = 0
spGEV = 0
now = 0
lHPCh = 0

218 Z Specification of the Landing Gear System

Down1 DNF 5 TCASE
Down1 DNF 5

l20 = 0
stEV = 1
hPos = down
st = init
gEV = pressing
stGEV = 0
spGEV = 0
now = 0
lHPCh = 0

	Introduction
	Introduction to Model-Based Testing
	Software Testing
	Functional Correctness and Formal Specifications
	Model-Based Testing

	Introduction to the Z Notation
	The Requirements
	The Form of a Z Specification
	Basic Types
	The State Space
	Opening the First Savings Account
	State Invariants

	Introduction to the Test Template Framework
	The Valid Input Space of a Z Operation
	Applying Testing Tactics
	Building a Tree of Test Specifications
	Pruning Inconsistent Test Specifications
	Deriving Abstract Test Cases from Test Specifications
	Brief Discussion of the TTF
	Advantages of the TTF
	The Form of Test Cases in the TTF
	Test Oracles in the TTF
	State Invariants in the TTF

	The Z Specification of the Landing Gear System
	Basic Types
	State of the Controlling Software
	Initial states
	Assumptions and Limitations of the Z Specification
	Operations Concerning Sensor Readings and its Anomalies
	Gears in Extended Position
	Gears in Retracted Position
	Shock Absorbers
	Doors Open
	Doors Closed
	Hydraulic Circuit
	Analogical Switch

	Operations Concerning Normal Mode
	Interaction with the cockpit
	Retraction sequence
	Outgoing sequence

	Time Advance
	Operations Concerning Health Monitoring
	Anomalies Related to the Analogical Switch
	Anomalies Related to the Hydraulic Circuit
	Anomalies Related to Doors Motion
	Anomalies Related to Gears Motion

	Test Case Generation from the Z Specification
	Conclusions
	Test Conditions
	Abstract Test Cases

