2024-08-282024-08-282014-01-021553-7366https://hdl.handle.net/2133/27660Pseudomonas aeruginosa is one of the most virulent and resistant non-fermenting Gram-negative pathogens in the clinic. Unfortunately, P. aeruginosa has acquired genes encoding metallo-β-lactamases (MβLs), enzymes able to hydrolyze most β-lactam antibiotics. SPM-1 is an MβL produced only by P. aeruginosa, while other MβLs are found in different bacteria. Despite similar active sites, the resistance profile of MβLs towards β-lactams changes from one enzyme to the other. SPM-1 is unique among pathogen-associated MβLs in that it contains “atypical” second sphere residues (S84, G121). Codon randomization on these positions and further selection of resistance-conferring mutants was performed. MICs, periplasmic enzymatic activity, Zn(II) requirements, and protein stability was assessed. Our results indicated that identity of second sphere residues modulates the substrate preferences and the resistance profile of SPM-1 expressed in P. aeruginosa. The second sphere residues found in wild type SPM-1 give rise to a substrate selectivity that is observed only in the periplasmic environment. These residues also allow SPM-1 to confer resistance in P. aeruginosa under Zn(II)-limiting conditions, such as those expected under infection. By optimizing the catalytic efficiency towards β-lactam antibiotics, the enzyme stability and the Zn(II) binding features, molecular evolution meets the specific needs of a pathogenic bacterial host by means of substitutions outside the active site.The presence of Zn(II)-containing metallo-β-lactamases (MβLs) that confer resistance to all penicillins, cephalosporins and carbapenems in Pseudomonas aeruginosa adds significantly to the threat of this pathogen in our health care system. SPM-1 is an MβLs widely distributed in South America and only found in P. aeruginosa. In common with all MβLs, the active site residues are highly conserved. In this work we asked the following question: how would substrate specificity evolve in SPM-1 if the active site residues are highly uniform and do not permit substitutions. To this end, we explored the role of two amino acids (S84 and G121) that are outside the active site (second sphere) and are unique in the SPM-1 β-lactamase. We discovered that replacing these amino acids impacts resistance to cephalosporins and carbapenems and that this resistance profile depends on the enzymatic behavior and the availability of Zn(II) in the environment. This work demonstrates how protein evolution by means of subtle substitutions outside the active site meets the specific needs of a pathogenic bacterial host.1-12enopenAccessPseudomonas aeruginosaMetallo-β-lactamasesBeta-lactam resistanceDrug resistance, bacterialCodonAmino AcidsHost-specific enzyme-substrate interactions in SPM-1 metallo-β-lactamase are modulated by second sphere residuesarticuloGonzález, Lisandro JavierMoreno, Diego M.Bonomo, Robert A.Vila, Alejandro J.Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y FarmacéuticasCC0 1.0 Universal1553-7374