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Abstract 

 Chemometric methods are applied to the analysis and interpretation of large 

multivariate data sets obtained in environmental monitoring studies. Concentrations of 

multiple organic compounds were measured in river samples taken from several sampling 

sites, at various geographical locations, during a number of campaigns and/or sampling 

time periods. Samples were collected and analyzed as part of an extensive multi-annual 

monitoring program from a mediterranean river basin (in Catalonia, at the northeast of 

Spain) by the Water Catalan Agency. Due to the great amount of multivariate data stored in 

environmental databases and to their complexity, chemometric modeling methods like 

Principal Components Analysis (PCA) and Multivariate Curve Resolution with Alternating 

Least-Squares (MCR-ALS) coupled to appropriate mapping representations are proposed 

for the evaluation of the environmental quality of the studied rivers. Results achieved in 

this study are intended to be a contribution to water quality assessment and evaluation of 

contamination of surface waters in Catalonia, and to support public policies of 

environmental control and management in the region under study.  

 

Keywords: Chemometrics, Multivariate curve resolution alternating, Principal Components 

Analysis, Environmental Monitoring, Surface Water. 
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1. Introduction 

 Environmental data bases constitute a suitable option for monitoring and control of 

water systems. A potential disadvantage associated with large data bases is the difficulty in 

their interpretation for decision making. A good alternative for analysis is to resort to 

multivariate methods. They allow extract information on the behaviour of the variables 

involved in the several different studied dimensions (e.g., time and space). When combined 

with geo-positioning tools, identification of the main sources of contamination is possible, 

whether they are point or diffuse, or from anthropologic or geologic origin. 

 In this work, a data base from the Agencia Catalana de Agua (Catalonian Water 

Agency), containing information on a large number of potential contaminants, was studied 

using different chemometric techniques. Chemometrics provides powerful tools for the 

modeling and interpretation of large environmental multivariate data sets generated within 

environmental monitoring programs.1,2 The goal of these studies is the computation, 

screening and graphical display of patterns in large data sets, looking for possible 

contamination sources and their distribution. Principal Component Analysis (PCA) is one 

of these multivariate methods for data analysis, which is frequently used in environmental 

exploratory studies.3,4 PCA allows the transformation and visualization of complex data 

sets into a new and simpler perspective, in which the more relevant environmental 

information can be easily perceived. Using PCA, contamination patterns may be identified 

and their geographical and temporal distributions may be investigated. PCA has been 

applied in previous studies by several authors to various types of environmental data sets, 

such as those stemming from waters, biota and sediments.5 -9 Another method here applied 

is Multivariate Curve Resolution Alternating Least Squares (MCR-ALS), a powerful 
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chemometric tool with an increasing application for the analysis of environmental 

monitoring data sets.10 It has been recently validated for the identification of environmental 

pollution patterns in surface water.11 This latter study was intended to model pollution in 

surface water of the Ebro River delta (a smaller area of around 300 km2), during the main 

growing-season of the rice crop. Other chemometric methods have also been applied to the 

investigation of environmental data, such as partial least-squares (PLS),7,8 parallel factor 

analysis (PARAFAC) and Tucker3 models.12 The use of multivariate factor analysis, such 

as those proposed in the present work has also been discussed in several books.1,13 In the 

present work, the research is focused on a large environmental data set, obtained during a 

study of natural surface waters from the rivers of Catalonia (northeast of the Iberian 

Peninsula), including the analysis of multiple organic contaminants. In the framework of 

this extensive multi-annual environmental monitoring program from the Water Catalan 

Agency, organic contaminant compounds in the entire geographical area of Catalonia were 

analyzed during the years 1997-2004. The occurrence of organic compounds in natural 

surface waters is attributed to the presence of several industrial, agricultural and urban 

wastewater points and to diffuse contamination sources. The Catalonia geographical area is 

one of the most industrialized areas of Spain, and it is of interest to evaluate its 

environmental situation. Although this investigation provides results which could be 

considered only of concern for the particular area under study, the obtained results and 

conclusions are of general interest from an environmental point of view to other river basin 

areas, especially those which are close to the Mediterranean coasts, which have the same 

type of climate, hydrology, vegetation and human activities (industrial, agricultural, 

urbanization) operating over the river water systems. This work is also of interest from a 
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chemometric point of view, specifically for the comparison of the results furnished by PCA 

and MCR-ALS, which are often used in environmental studies.1,14 Other recent 

publications are concerned about the presence of persistent organic compounds in 

Catalonia,15 -18 (ACTUALIZAR)which were also analyzed in several types of 

environmental compartments. Additionally, other recent examples exist proposing rather 

similar approaches for the resolution and interpretation of major contamination sources of 

surface waters operating in several river basins over the world.19 The two main objectives 

of this work are thus: 1) the investigation of main long-term diffuse contamination sources 

of organic contaminants in the Catalonia river basin area, and 2) the estimation of their 

geographical distribution, in order to contribute to the evaluation of the environmental 

health of the surface waters of the region under study. To achieve these two goals, 

multivariate data methods of analysis based on PCA and MCR-ALS are applied and 

compared. 

 Diffuse and point pollution in the Catalonia River basin area arising from 

agriculture, industry and human sewage, is an issue of great concern, since changes in 

climatic conditions and land use practices have produced large scale adverse impacts on 

both water quality and quantity. Through the environmental monitoring program performed 

at several sampling sites and environmental compartments of the network, a large amount 

of concentration values of chemicals spread into the Catalonia river basin were obtained. In 

order to derive useful environmental information from the data, the application of modern 

chemometric methods based in new multivariate factor analysis20 tools is proposed. The 

basic assumption of these methods when they are applied to environmental data tables is 

that each value of a measured variable in a particular sample is due to the sum of 
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contributions from individual independent sources of different origin. Each one of these 

sources is characterized by a particular chemical composition profile and is distributed 

among samples in a different way. As a result of the application of chemometric methods, 

the main point and diffuse sources of contamination in the environment and their origin 

may be identified and their distribution profiles among samples (geographical, temporal, 

among environmental compartments) are characterized. 

 The distribution of contamination sources and their impact over the territory can be 

assessed by the use of geographical information systems,21,22 by means of cartographic 

techniques of symbols and pollution prediction maps. Geo-statistical methods23-25 based on 

mathematical and statistical functions are used, which allow the estimation of continuous 

surfaces using the measured variables to predict unknown value by interpolation and, at the 

same time, give an estimation of the errors associated to these predictions. 

 Finally, it is worth mentioning that the proposed techniques and tools can contribute 

to the management of the river basins under the application of the Water Framework 

Directive (2000/60/EC) 

 

2. Experimental data 

 Samples were not taken in a special monitoring design in the zone under study. 

Sampling was performed from locations previously decided by the Catalan Water Agency, 

and they were taken once per year, although not every site was studied every year. They 

were obtained over a period of eight years, from 1997 to 2004. The geographical area under 

study where these compounds were analyzed covered several small and medium size rivers 

in the Catalonia region, such as (from North to South Catalonia coast): Muga, Fluvià, Ter, 
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Daró, Riudaura, Tordera, Besòs, Llobregat, Foix, Gaià, Francolí, Riu de Canyes, Noguera 

Pallerasa, Noguera Ribagorçana, Segre, Ebre, and Garona rivers (see location of these 

rivers in Fig. 1). With the exception of the last five rivers, the remaining ones are typical 

Mediterranean rivers, characterized by short length and small catchment areas, steep slopes 

and drastic flow variations between the dry summer season, and sudden flow increases after 

the fall and spring rains that often cause floods and damages. 

 These data sets have been analyzed as they were provided by the Catalan Water 

Agency, and no attempt was made to have an optimal design of the best sampling sites for 

the purpose of environmental source identification. It should thus be noted that because of 

these sampling limitations, information about temporal evolution of the river contamination 

sources in Catalonia rivers could only be obtained in a limited way. These provisional 

results should be confirmed with new data obtained using a better designed monitoring 

sampling plan, including more recent years. Some work is pursued at present in this 

direction.  

 Water samples were collected from the already numbered points of the quality 

network established by the Catalan institution of water (‘Agencia Catalana de l’Aigua’), 

indicated in Fig. 1. Samples were kept in 1 liter glass bottles fitted with Teflon-lined caps, 

leaving no headspace. After sampling, they were preserved in cold (not exceeding 5ºC) 

until the moment of performing the analysis.35 

 The following volatile compounds were analyzed in the samples: ethylbenzene, 

m,p-xylene, and toluene using headspace analysis with GC-FID36-37. Headspace analysis 

was performed with a Varian Genesis headspace autosampler connected to a Varian Star 

3600 gas chromatograph. Samples were equilibrated at 70 ºC for 4 min, mixed at 80% of 
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full power for 7 min, and, after mixing, stabilized for 1 min. The sample loop volume was 1 

mL, line and valve were maintained at 150ºC and vials were pressurized at 7 psi. These 

conditions resulted in the highest sensitivity and reproducibility. Compounds were 

separated on a 75 m × 0.53 mm i.d. × 3 µm film DB-624 fused-silica column from J&W. 

The GC operating temperatures were: injector 160 ºC detector 300ºC oven 40ºC (5 min) 

programmed at 5ºC/min to 250ºC. Helium at 9 psi was the carrier gas. 

Other volatile compounds: 1,1,1-trichloroethane, 1,2-dichloropropane, 1,2,4-

trichlorobenzene, 1,2-dichlorobenzene, bromodichloromethane, bromoform, chloroform, 

dibromochloromethane, tetrachloroethylene, carbon tetrachloride, and trichloroethylene 

were analyzed by headspace with GC-ECD.36-37 Headspace analysis was performed with a 

Varian Genesis headspace autosampler connected to a Varian Star 3600 gas 

chromatograph. Samples were equilibrated at 70 ºC for 4 min, mixed at 80% of full power 

for 7 min, and, after mixing, stabilized for 1 min. The sample loop volume was 1 mL, line 

and valve were maintained at 150ºC and vials were pressurized at 7 psi. These conditions 

resulted in the highest sensitivity and reproducibility. Compounds were separated on a 30 

m × 0.32 mm i.d. × 1.8 µm film DB-624 fused-silica column from J&W. The GC operating 

temperatures were: injector 160 ºC detector 300ºC oven 40ºC (5 min) programmed at 

6ºC/min to 140ºC (1 min) and at 15ºC/min to 220ºC (5 min) Helium, at 7 psi, was the 

carrier gas. 

The following compounds: chlorpyrifos, diazinon, phenitrotion, malathion, 

acenaphthene, acenaphthylene, anthracene, phenanthrene, fluoranthene, fluorene, pyrene, 

4,4'-dichlorodiphenyldichloroethane (DDD), 4,4'-dichlorodiphenyldichloroethylene (DDE), 
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4,4'-dichlorodiphenyltrichloroethane (DDT), α-, β-, δ- and γ-hexachlorocyclohexane, 

endosulfan I, endosulfan II, endosulfan sulfate, hexachlorobenzene, were analyzed by 

liquid-liquid extraction according to the method 625 from the U.S. Environmental 

Protection Agency38. One liter of sample was added with internal standards (anthracene-

d10 and decachlorobiphenyl) and extracted twice with dichloromethane (150 mL and 100 

mL) by stirring for 10 min. The organic extracts were combined and dried with anhydrous 

Na2SO4. Dichloromethane was removed under reduced pressure, first in a round bottom 

flask and further in a conic flask, until a volume of 0.5 mL. The concentrate was transferred 

to a 1 mL conic vial, washing the flask with isooctane, and dried under N2 stream until a 

final volume of 100 µL for HRGC/MS and/or HRGC/ECD analysis. Surrogate standard 

mixture (nitrobenzene-d5, 2-fluorobiphenyl and 4-terphenyl-d14) was added to the extract. 

Final extracts were analyzed by HRGC. Organochlorine pesticides (4,4'-

dichlorodiphenyl-dichloroethane (DDD), 4,4'-dichlorodiphenyldichloroethylene (DDE), 

4,4'-dichlorodiphenyltrichloroethane (DDT), α-, β-, δ- and γ-hexachlorocyclohexane, 

endosulfan I, endosulfan II, endosulfan sulfate, hexachlorobenzene) were quantified by 

HRGC/ECD and their structure identity was confirmed by HRGC/MS. The other pesticides 

and PAH (chlorpyrifos, diazinon, phenitrotion, malathion, acenaphthene, acenaphthylene, 

anthracene, phenanthrene, fluoranthene, fluorene, pyrene) were identified and quantified by 

HRGC/MS. 

The HRGC/MS were performed on an integrated quadrupole GC/MS MD-800 from 

Fisons (Manchester, UK). Helium was used as carrier gas (at a constant flow of 1.2 

mL/min) in a DB-5MS column (30 m × 0.25 mm i.d., 0.25 µm film thickness). The 
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program was from 90ºC (held 5 min) to 240ºC at 6ºC/min and to 310ºC (maintained for 10 

min) at 10ºC/min. Injector temperature was 280ºC, and the injection mode was splitless for 

90 s. The scanning was 40-500 m/z at 1 scan/s. MS spectra were compared with NIST 

spectra library (62,235 spectra) and with Wiley spectra library 5th ed. (138,111 spectra), 

and each compound was identified according to its best mass spectrum fitting. The 

HRGC/ECD analysis was performed on a Shimadzu GC-9A model gas chromatograph 

equipped with an ECD-9 model detector of the same firm. Helium was used as carrier gas 

at a flow of 2.6 mL/min in a DB-5 column (30m × 0.2 mm i.d., 0.25 µm film thickness). 

The program was from 130ºC (held 1 min) to 140ºC (maintained for 1 min) at 12ºC/min, 

and from 140ºC to 310ºC at 4ºC/min; the final temperature was further held for 10 min. 

Injector and detector temperature were 290ºC and the injection mode was splitless for 1 

min. 

Pentachlorophenol was derivatized to its acetyl pentachloro derivative by treatment 

with 0.7 mL of acetic anhydride. For the extraction, 1 mL of hexane was previously added 

to 100 mL of sample, and 0.7 g of NaHCO3 were added to the water sample as buffer. The 

organic extract was transferred to a 1 mL vial to analyze by HRGC/MS. Final extracts were 

analyzed by HRGC/MS with an integrated quadrupole GC/MS MD-800 from Fisons 

(Manchester, U.K.). Helium was used as carrier gas (at a constant flow of 1.2 mL/min) in a 

DB-5MS column (30 m × 0.25 mm i.d., 0.25 µm film thickness). Chromatograms were 

recorded under time-scheduled selected ion monitoring (SIM) using acquisition windows 

from 5-28 min, and 266, 264, 268, 308 m/z values. The dwell time was set at 0.08 s. The 

program was from 90ºC (held 2 min) to 130ºC (0 min) at 15ºC/min, and from 130ºC to 
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310ºC at 10ºC/min; the final temperature was further held for 5 min. Injector temperature 

was 280ºC, and the injection mode was splitless for 90s.39-40 

 

3. Chemometric methods 

3.1. Data pre-treatment 

 Data sets were organized in one data table or data matrix. The rows of this data 

matrix identified samples at the various geographical sites and sampling dates, while 

columns (variables) represent the analyzed chemical compounds. Dimensions of the data 

matrix were 303×37, corresponding to 303 observations (sampling sites and times) and 37 

analyzed compounds. Prior to the application of chemometric data processing, the different 

variables contained in the data matrix were evaluated. Variables whose concentrations were 

only 5% over the limit of detection were removed, because they did not provide useful 

information. In other cases, for other variables having a significant amount of values above 

their detection limit, the remaining values below the limit of detection were replaced by 

half of this limit. The distribution of variables was studied, and values which were very far 

from the mean of the distribution were replaced by the maximum value of the specific 

variable in the same sample site when this value was excluded.  

Scaling the elemental values over the sample is generally recommended, because 

the different compound concentrations can have large variations among them. Normalizing 

the concentrations will provide more equal weight to chemical species with substantially 

different concentrations. However, it should be kept in mind that scaling will lose 

information on the relative size and relative errors associated with the various data 

variables. 
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 In determining the best data pretreatment method, a compromise was sought to find 

the method which provided the easiest and more optimal interpretation of possible 

contamination sources. The following data pretreatment methods were investigated: 1) 

concentration values were log-transformed, i.e., the decimal logarithm of all data matrix 

values were calculated; this transformation of experimental data has been recommended for 

skewed data sets,26,27 such as those usually found in environmental studies, where a large 

amount of the values are low, with a minor global contribution of high values, 2) log 

concentration values of each compound in the several samples were mean centered, i.e., the 

mean of the log concentration values of the same compound in the several samples (mean 

of each column variable of the data matrix) was subtracted from each log concentration 

value, 3) log concentration values of each compound in the several samples were scaled, 

i.e., each log concentration value was divided by the standard deviation of the log 

concentration values of the same compound in the several samples (standard deviation of 

each column variable of the data matrix), 4) log concentration values of each compound in 

the several samples were auto-scaled, i.e., previous mean centering and unit variance 

scaling pretreatment methods were combined, 5) data were scaled based on either the whole 

set of values or on a yearly basis, 6) MinMax transformation, and 7) MinMax of log 

concentration values (the two last ones explained in more detail below).  

Of all the data pre-processing methods mentioned above, the MinMax with 

logarithmical transformation was the most successful one, hence some additional details are 

provided below. The specific expression for the MinMax transformation is: 

 
)min()max(

)min(
transf xx

x
−

−
=

xx         (1) 
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where x is a vector of log-values, max(x) and min(x) are the maximum and minimum of x 

respectively, and x and xtransf are the raw and transformed elements. MinMax was applied in 

two different ways: 1) taking as minimum and maximum values those corresponding to the 

complete data set, and 2) taking the minimum and maximum of each yearly campaign. In 

the first MinMax mode, the differences among years are superimposed to the differences 

within each year, while in the second mode the scaling differences among years are 

decreased. Therefore, the information provided by these two different transformation 

modes is not the same: the first one allows observe scale/intensity differences in the scores 

among years, while the second allows the detection of specific variations within each year. 

In this work, more interpretable results were obtained using the first approach. 

 

3.2. PCA 

 PCA assumes a bilinear model to explain the observed data variance using a 

reduced number of components, which are orthogonal. For a detailed description of this 

well-known methodology in chemometrics and other multivariate statistical data analysis 

methods see previous references.3,4 The bilinear decomposition may be written by the 

element wise equation: 

 dij = ij

N

n
inin eyx +∑

=1
         (2) 

where dij is one of the entries of the experimental data matrix (concentration of one organic 

compound) from the ith row (a particular sample) and the jth column (a specific organic 

compound), xin is the corresponding nth score element for the sample i, yjn is the 

corresponding nth loading element for the variable j and eij is the residual not modeled by 
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the sum of N components or contributions. The same bilinear equation can be written in 

matrix form as: 

 D = XYT + E          (3) 

where D is the experimental data array expressed as a data matrix. Eq. (3) describes the 

decomposition (matrix factorization) of matrix D into two matrices, the loading matrix YT 

and the score matrix X. The loading matrix YT identifies the main sources of the data 

variance by means of their chemical composition (composition loadings), which eventually 

may be related to the main patterns and sources of contamination. The score matrix X 

provides sample scores for these data variance patterns, indicating the geographical and 

temporal sample distribution of these patterns. PCA solves Eq. (3) under orthogonal 

constraints. Each successively extracted principal component explains maximum variance. 

The determination of the complexity of the model in PCA (i.e., the number of principal 

components) is performed as a compromise between several goals: model simplicity (few 

components), maximum variance explained by the model (more components), and model 

interpretability. 

 

3.3. MCR-ALS 

 MCR-ALS28,29 works with the data array arranged in a column-wise augmented 

data matrix Daug, such as that for PCA (described in the previous Section). The bilinear 

decomposition of the augmented matrix Daug is performed according to the same 

expression already given for PCA [i.e., Eq. (3)]. Although only the recovered information 

in YT appears to be explicitly related to one of the three modes, the matrix X implicitly 

contains the information related to the matrices X and Z in the remaining two modes, and 
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they can be recovered by appropriate refolding followed by singular value decomposition 

(SVD) analysis, as described before for PCA. In contrast to PCA, however, during the ALS 

optimization phase of MCR-ALS, the selected constraints were non-negativity for the 

profiles in both modes (for the augmented scores mode and for the loadings in the second 

mode), while the loadings in the second mode were normalized to equal length. 

 

3.4. MCR-ALS for trilinear models 

Trilinear models can be implemented iteratively as a constraint during ALS 

optimization in the MCR-ALS method.11,30,31 The application of MCR-ALS using this 

constraint should not be considered to be equal to a standard bilinear decomposition of the 

augmented two-way data matrix Daug. During the ALS optimization, each individual profile 

of the augmented scores matrix X is constrained to fulfill the trilinearity condition 

independently and iteratively. The same procedure used previously for the recovery of the 

loadings in the three modes from the augmented scores matrix obtained by PCA or MCR-

ALS is applied now inside/during the ALS optimization instead of at the end of the 

optimization as in PCA. Each column of the X matrix is appropriately folded at each ALS 

iteration step to give a matrix with a number of rows equal to the number of sampling sites 

and eight columns corresponding to each of the years (1997-2004). SVD of this folded 

scores matrix gives the loadings in the first and third modes for the considered component. 

These two loadings describe the common variation captured by ALS in the two modes 

(sampling sites and years) for that particular component. The Kronecker product32-34 of 

these two new loading vectors gives the new augmented scores vector which substitutes the 

corresponding column of the X scores matrix. When this constraint is inserted during each 
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step of the ALS iterative optimization procedure, it forces the shape of the loadings vector 

in the first mode (describing the sampling site variation of the considered component) to be 

the same for the eight years. Moreover, it captures the intensity (scale) variation of this 

component in the loadings of the third mode, showing the scale differences of this 

component among the eight years. This is precisely what is implied by the trilinear 

PARAFAC model described by Eq. (3) and, in practice, results obtained by MCR-ALS 

with the trilinearity constraint applied to all the components of the system should give 

practically the same results as the application of PARAFAC model based methods. 

However, the main advantage of the trilinearity constraint in MCR-ALS over the 

PARAFAC model based methods is that this procedure in MCR-ALS is applied 

independently for each component and that it is not compulsory to apply it for all the 

resolved profiles in X. Actually, several columns of X matrix can be constrained in several 

manners during MCR-ALS. This makes a clear distinction with PARAFAC where all 

resolved components should fulfill the sought trilinear condition. 
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4. Results and discussion 

In Table 1, a summary of the descriptive statistics obtained in the analysis of the 

previously referred compound using the procedure described above is given. In this Table, 

for every compound analyzed, the minimum (usually at the limit of detection), the 

maximum value, the mean, the median, the standard deviation and the % of values above 

the detection limit are given. This database contains 37 compounds measured in several 

sampling sites from Catalonia rivers between the years 1997 and 2008, during a total of 8 

years. The sampling sites were 35 but samples were not taken from all sites in all 

campaigns. For this reason, the size of the matrix was 303×37, where the first mode 

includes all samples taken in different sites and times, and the second mode contains the 

measured chemical compounds. In this table, variables are given in their own different 

scales, which can be very different in some case, being necessary the use of an appropriate 

scaling preprocessing method to give them a similar weight during their analysis. When 

minimum, maximum, average and median values are observed, it is easily concluded that 

data distribution is not following a normal distribution of values and that probably are 

better described by a log normal distribution of values. This indicates the possibility of 

using log transformation of data to better investigate the data variance and to decrease the 

weight of extreme variable values,  

Since in this work source apportionment was intended, data were not initially mean 

centered. In multivariate curve resolution and source apportionment and receptor modeling 

studies, the main interest is in actual values and not in their deviations from the mean. 

MinMax was the finally preferred data pre-processing tool, because it minimized 

differences in variable scales, allowing the comparison of results without giving more 



18 

 

weight or importance to a particular variable. MinMax was applied separately to samples of 

each campaign rather than jointly to the entire data base, decreasing in this way the 

differences among the several campaigns and thus providing a better comparison of the 

variation of the compound concentrations within them. A first approximation to estimate 

the number of components was obtained by PCA, which indicates the number of possible 

major independent sources of pollution affecting measured data. The number of 

components was estimated by examining the size of the changes in explained variance in 

PCA as a function of the number of principal components. Three components were 

proposed to model the MinMax pre-processed data matrix, which allowed to explain 62.9% 

of the overall variance.  

In Fig. 2, loadings obtained by PCA are shown. It can be observed that the first 

component (% var expl) describes the average contamination affecting the geographical 

region under study over the investigated years, and the other two are components 

describing the contrast with more specific contamination sources. The second component 

(% var expl) highlights the contamination coming from some pesticides like 

hexachlorcyclohexane (alpha, beta and delta isomers, as well as the gamma isomer 

lindane), endosulfan (I, II and sulfate) and diazinon. Finally, the third component (% var 

expl) describes the different behavior of the halomethanes (bromodichloromethane, 

chloroform, dibromochloromethane), chlorinated ethenes (tetrachloroethylene, 

trichloethylene), carbon tetrachloride and chlorobenzenes and halopropanes. The 

corresponding PCA scores describe the geographical distribution of these contamination 

patterns, marking what sites were more highly contaminated on the average (PC1 scores) 

and what sites were more affected by more specific agricultural contamination sources 
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(PC2 scores) and by more industrially related contamination sources (PC3 scores). Because 

PCA defines the same space vector space as the one obtained by MCR-ALS decomposition 

using the same number of components (see below), PCA score plots have been omitted for 

brevity. An advantage of MCR-ALS over PCA is the possibility of applying natural 

constraints like non-negativity, making easier the physical interpretation of the results. For 

this reason, the discussion about the possible sources or patters was mainly focused on 

MCR-ALS results.  

 
4.1 MCR-ALS results of the complete data set applying non-negativity constraints 

MCR-ALS was first applied to the complete data set (37 compounds in all 

sampling sites and in 8 years) with non-negativity constraints. The trilinearity constraint 

could not be applied in this case, since not all the sites were sampled in all the campaigns 

and therefore the data set could not be arranged as a three-way data array. Explained 

variance was 61.1 % for three components. These three components are interpreted in 

environmental terms as follows (see Fig. 3).  

The first component (Figs. 3 and 4) (33.8% of the total variance explained) is 

dominated by PAHs (polycyclic aromatic hydrocarbons, i.e., acenaphthene, phenantrene, 

fluorantene, fluorene, pyrene, etc.), THMs (trihalomethanes, chloroform, bromoform, 

bromodichloromethane) and minor contributions of other compounds such chlorinated 

ethenes (tri and perchloroethylene). The former group of compounds reflects diffuse 

contamination related to combustion engines, characteristic of areas with heavy traffic and 

industry. The second group can be associated to disinfection by-products generated during 

the chlorination treatment of drinking-water and returned to the environment through 

discharges from WWTP. As a whole, the contamination pattern described by this first 
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component corresponds to areas with heavy industrial and urban pressure. It is mainly 

located in Barcelona and its surrounding metropolitan area.  

The second component (Figs. 3 and 5) (14.8% of the total variance explained) is 

dominated by DDT related compounds (DDT and its metabolites DDD and DDE), 

hexachlorobenzene, halomethanes (bromodichloromethane, chloroform, 

dibromochloromethane), chlorinated ethenes (tetrachloroethylene, trichloethylene), carbon 

tetrachloride, and minor contributions of chlorobenzenes and halopropanes. Such a profile 

is specifically related to the chloro-alkali industry located in the low Ebro (Flix), which at 

present manufactures these chlorinated solvents, but was also a major producer of DDT in 

the past. Even though the production of DDTs was discontinued after their banning in 

Europe, the reported presence of polluted sediments in the river still generates downstream 

Flix a background contamination of DDT (and mostly of its metabolites DDE and DDD). 

Hexachlorobenzene is also generated in the same chloro-alkali chemical plant as by-

product during the electrolysis process. 

The third component (Figs. 3 and 6) (12.5% of the total variance explained) is 

dominated by pesticides like diazinon, chlorpyriphos, phenitrotion, malathion, 

hexachlorocyclohexan (alpha, beta and delta isomers, as well as the gamma isomer 

lindane), endosulfan (I, II and sulfate), and other minor contributors such as 

pentachlorophenol and chlorinated solvents. The strong presence of these pesticides is 

consistent with its occurrence in agriculture dominated areas, like Lleida or the rural areas 

in the neighborhood of the Barcelona metropolitan area (Maresme, Anoia etc.) or the 

floodplains and deltas of the main rivers, all of them characterized by intensive agriculture. 
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Figures 4, 5 and 6 summarize the geographical distribution of these three major 

contamination patterns previously described. These plots were obtained averaging the 

scores of all the campaigns in a single matrix to simplify their visualization.  

 

4.2 MCR-ALS results of the reduced data set applying non-negativity and trilinearity 

constraints 

From the 37 compounds included in the original data base, 24 (see Table 1) were 

removed because the corresponding concentrations were not measured in all campaigns and 

all sites. The remaining 13 compounds were: diazinon, phenanthrene, fluoranthene, 

fluorene, pyrene, pentachlorophenol, γ-hexachlorocyclohexane (lindane), 1,1,1-

trichloroethane, bromodichloromethane, chloroform, dibromochloromethane, 

tetrachloroethylene and trichloroethylene. A new data set was built with only these 13 

compounds measured in 17 sampling sites at 8 campaigns. The whole data set gave a data 

table or matrix of size 136×13, i.e. concentrations of the 13 compounds at the 136 different 

samples.  

MCR-ALS was then conducted in two manners: (1) only applying the non-

negativity constraint to loadings and scores, and (2) applying non-negativity and also 

trilinearity constraints (give references here). This latter constraint is more restricted, 

leading to a decreased percentage of explained variance, but it has the advantage of 

separating the between year campaigns patterns of the resolved components. It demands 

some data reorganization, in such a way that all campaigns display the same number of 

sampling sites, leaving only 17 studied locations. Results obtained by these two MCR-ALS 

analyses were rather similar, in terms of explained variances, 61.2% and 54.4% for the two 
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approaches respectively, and also resulted rather similar in relation to the composition of 

the resolved components. This suggested that the data could be approximated by the 

trilinear model, giving more easily interpretable component profiles, especially in terms of 

the distribution and geographical representation (mapping) of the resolved components 

describing the different contamination patterns under study. For brevity only the results 

obtained using the trilineraity constraint are finally given in this discussion.  

Figure 7 shows the results corresponding to non-negativity/trilinearity constrained 

MCR-ALS study. If the loading profiles corresponding to the different variables are 

compared, some patterns are observed always within the different components. Three 

different patterns grouping different compounds were identified (total explained variance 

54.4%): (1) A first component (30.1% of the total variance explained) is dominated by 

diazinon, phenanthrene, fluoranthene, fluorene, pyrene, lindane, tetrachloroethylene and 

trichloroethylene; (2) a second component (13.2% of the total variance explained) is 

dominated by phenanthrene, fluoranthene, fluorene, pyrene, bromodichloromethane, 

chloroform, dibromochloromethane; and (3) a third component (11.1% of the total variance 

explained) is dominated by pentachlorophenol, 1,1,1-trichloroethane, tetrachloroethylene 

and trichloroethylene. Once identified the chemical composition of the main contamination 

patterns, the localization of these patterns and corresponding possible sources are 

investigated 

The first MCR-ALS component or contamination pattern (30.1%) defined by the 

first group of compounds (see above) is mainly localized in the following sampling sites 

(see Fig. 7): (1) Anoia river, Vilanova del Camí, (2) Foix river, Castellet i la Gornal, and 

(3) Clamor de les Canals, Lleida. All these locations correspond to rural and middle size 
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villages and according also to the composition of this possible source identifies a general 

contamination source of mixed agricultural and population sources. Second (13.2%) and 

third (11.1%) components are focused in regions near Barcelona (Fig. 7) and give patterns 

corresponding to industrial and heavy population sources. Specifically, the second 

component corresponds to: (1) Congost river, Montornès del Vallès, (2) Besòs river, 

Montcada i Reixa and Santa Coloma de Gramenet, Barcelonès, and (3) Riera de Rubí, 

Castellbisbal Finally, the third component is localized in: (1) Mogent river, Montornès Del 

Vallès, (2) Besòs river, Montcada i Reixac, (3) Besòs river, Santa Coloma de Gramenet, 

Barcelonès, and (4) Llobregat river, Abrera. As regards the time evolution of these 

components, it can be concluded that both the first and third component have a growing 

trend over time, while the second one appears to be decreasing.  

Results obtained with trilinearity and non-negativity constraints do agree with 

previous results obtained modeling the whole data set with MCR-ALS bilinear modeling. 

Again three MCR components were used to justify the observed data variance. Interpreting 

the composition and location of each component we can conclude that: the first component 

can be associated to the presence of several pesticides related to agriculture activities, the 

second component can be associated to combustion engines characteristic of areas with 

heavy traffic and industry, and third component profile can be specifically related to the 

chloro-alkali industry. 

 

5. Conclusions 

In this work, MCR-ALS is applied to investigate major contamination patterns 

affecting river basins of a particular geographical region (in Catalonia, NorthEast Spain) 
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over several years of monitoring and analysis. Using MCR-ALS with non-negativity and 

with or without trilinearity constrains resulted to be an efficient tool to resolve the major 

contamination patterns explaining the measured data variance. Three major contamination 

patterns were detected, which were respectively related to agriculture activities, to 

industrial activities and to the chlorination treatment of drinking-water. Areas where these 

major contamination patterns were more relevant were then displayed using appropriate 

mapping tools.  

An additional conclusion of this work is the demonstration of the data 

summarizing and interpretation possibilities obtained by the application of chemometric 

methods to large environmental data sets stored by official environmental agencies for their 

improved quality management and interpretation. 
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 Table 1: Measured compounds and their descriptive statistics  

Compound Min max mean median Std. Dev. % data 
Ethylbenzene 0.25 9.4 0.3 0.25 0.6 2.6 
m,p-Xylene 0.25 33.2 0 0.25 2 5.3 
Toluene 0.3 644 0 0.3 40 5.6 
Chlorpyrifos 5 1452 10 5 90 13.5 
Diazinon 5 3894 0 16 200 62.4 
Fenitrothion 5 201 0 5 20 7.3 
Malathion 5 338 0 5 30 2.0 
Acenaphthene 2 919 0 2 50 17.2 
Acenaphtylene 2 255 0 2 20 8.9 
Anthracene 2 34 2 2 2 3.0 
Phenanthrene 2 245 10 6 30 64.0 
Fluoranthene 2 16 3 2 2 23.1 
Fluorene 2 201 0 2 20 33.3 
Pyrene 2 52 4 2 5 35.3 
PCL-Phenol 0.01 1.45 0.04 0.035 0.08 97.4 
4,4'-DDD 0.5 141 1 0.5 8 4.0 
4,4'-DDE 0.1 61.2 0 0.1 4 2.3 
4,4'-DDT 0.5 152 2 0.5 10 3.3 
α-Hexachlorocyclohexane 0.1 16675 0 0.1 1000 14.5 
β-Hexachlorocyclohexane 0.5 2706 0 0.5 200 5.3 
δ-Hexachlorocyclohexane 0.1 1679 0 0.1 100 3.0 
Endosulfan I 0.1 544.7 0 0.1 30 12.5 
Endosulfan II 0.5 273 0 0.5 20 9.2 
Endosulfan sulfate 0.5 465 0 0.5 40 12.9 
Hexachlorobenzene 0.1 74 1 0.1 6 8.3 
Lindane (γ-
hexachlorocyclohexane) 0.1 15308 0 5.8 1000 90.1 

1,1,1-Trichloroethane 0.025 1.2 0 0.025 0.1 17.8 
1,2-Dichloropropane 3 93 4 3.5 8 99.7 
1,2,4-Trichlorobenzene 0.1 4.2 0.1 0.1 0.3 2.6 
1,2-Ddichlorobenzene 0.25 12.3 0.3 0.25 0.7 1.3 
Bromodichloromethane 0.025 3.12 0.1 0.025 0.2 34.3 
Bromoform 0.05 6.71 0.1 0.05 0.4 21.8 
Chloroform 0.025 8.6 0 0.025 1 41.6 
Dibromochloromethane 0.025 6.39 0.1 0.025 0.4 34.3 
Tetrachloroethylene 0.025 21.3 0 0.06 2 57.4 
Carbon tetrachloride 0.025 0.94 0 0.025 0.1 19.1 
Trichloroethylene 0.025 20 0 0.025 2 45.2 
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Figure captions 

 

Figure 1: Map of Catalonia, Spain, showing the sampling locations and studied rivers. 

 

Figure 2: PCA Loadings with MinMax of the log of the whole data set  

 

Figure 3: MCR-ALS Loadings with MinMax of the log of the whole data set  

 

Figure 4: Geographical location, superimposed on a map of Catalonia, Spain, of the spatial 

distribution of loadings of first MCR-ALS component with MinMax of the log of the whole 

data set. The scale of the contour lines is such that red corresponds to the maximum and 

blue to the minimum. 

 

Figure 5: Same as Figure 3, corresponding to the second MCR-ALS component. 

 

Figure 6: Same as Figure 3, corresponding to the third MCR-ALS component. 

 

Figure 7: MCR-ALS results for the decomposition of the data matrix by imposing non-

negativity and trilinearity restrictions. The colored bars indicate the relative intensities of 

the three identified components, and their distributions by sampling sites (red), variables or 

chemical compounds (blue) and campaigns (green).  

 

 



32 

 

Figure 1  

 

 

 

 

 

 

 

 

 

 

 



33 

 

Figure 2  

 



34 

 

Figure 3  

 



35 

 

 
 

Figure 4  

 

 

 

 



36 

 

 
Figure 5  

 

 

 



37 

 

 
Figure 6 

 



38 

 

Figure 7 

 

 

 


