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ABSTRACT 15 

Second-order liquid chromatographic data with multivariate spectral (UV-visible or 16 

fluorescence) detection usually show changes in elution time profiles from sample to sample, 17 

causing a loss of trilinearity in the data. In order to analyze them with an appropriate model, the 18 

latter should permit a given component to have different time profiles in different samples. Two 19 

popular models in this regard are multivariate curve resolution-alternating least-squares (MCR-20 

ALS) and parallel factor analysis 2 (PARAFAC2). The conditions to be fulfilled for successful 21 

application of the latter model are discussed on the basis of simple chromatographic concepts. 22 

An exhaustive analysis of the multivariate calibration models is carried out, employing both 23 

simulated and experimental chromatographic data sets. The latter involve the quantitation 24 

of benzimidazolic and carbamate pesticides in fruit and juice samples using liquid 25 

chromatography with diode array detection, and of polycyclic aromatic hydrocarbons in water 26 

samples, in both cases in the presence of potential interferents using liquid chromatography with 27 

fluorescence spectral detection, thereby achieving the second-order advantage. The overall 28 

results seem to favor MCR-ALS over PARAFAC2, especially in the presence of potential 29 

interferents. 30 

 31 

Keywords:  Parallel factor analysis 2; Multivariate curve resolution-alternating least-squares; 32 

Non-trilinear chromatographic data; Polycyclic aromatic hydrocarbons; Pesticides; Second-order 33 

advantage.  34 

35 
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1. INTRODUCTION 36 

The increasing analytical interest in second-order liquid chromatographic data with 37 

multivariate (UV-visible or fluorescence) detection is due to the fact that by suitable processing 38 

them with chemometric algorithms, analyte quantitation is possible in the presence of potential 39 

interferents (exploiting the so-called second-order advantage), and using simple chromatographic 40 

systems which save experimental time and organic solvents [1-5]. It is apparent that the 41 

integration of multiple data sets into one coherent computational model offers theoretical and 42 

practical advantages from an analytical point of view [6-8]. Although many applications of 43 

second-order multivariate calibration to chromatographic information have been developed, an 44 

important challenge for these approaches still remains: the existence of temporal misalignment in 45 

the data [9,10], meaning that a given constituent peak in different chromatographic runs appears 46 

at different positions and/or with different shapes along the elution time axis. Technically, this 47 

situation is described as leading to a loss of the property of trilinearity in the data, which 48 

basically requires that each chemical component should present a unique profile (both in the 49 

spectral and elution time mode) in all samples [11]. In the case of non-trilinear chromatographic 50 

data, two alternatives are available for data processing: (1) employ flexible algorithms, which 51 

permit a given component to have different time profiles in different samples, such as parallel 52 

factor analysis 2 (PARAFAC2) [12-14] and multivariate curve resolution-alternating least-53 

squares (MCR-ALS) [15- 18], and (2) mathematically pre-process each data matrix so that the 54 

analyte peaks are properly aligned and trilinearity is restored, and methods such as classical 55 

PARAFAC [9] or trilinear evolving factor analysis (TEFA) [19] can be applied. The latter 56 

option, however, does not appear to be the universal answer to the present problem, principally 57 

for three reasons: (1) the alignment methods are mostly developed for vectors (chromatographic 58 
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traces with univariate detection) and not for matrices, (2) they are sometimes difficult to 59 

implement due to the large number of subtle theoretical details which must be considered [20-60 

22], and (3) when unexpected constituents appear in test samples, or in the presence of peak 61 

swapping, many of these algorithms run into problems [20]. In short, there are many available 62 

and wildly different alignment methods, so that, according to ref. [20] it is necessary to have a 63 

set of rules-of-thumb that specify when to use which warping method, with what criterion, and 64 

how to choose the optimal reference.  65 

 In the case of flexible algorithms for matrix chromatographic data processing, 66 

PARAFAC2 and MCR-ALS have shown good analytical performance to solve analytical 67 

problems of diverse natures [23- 27]. PARAFAC2 is a variant of the well-known trilinear 68 

PARAFAC model, but does not assume a common shape for the elution profile of a given 69 

component in each sample [28,29]. One appealing feature of PARAFAC2 is that it often leads to 70 

unique solutions. However, this comes at the expense of a specific algorithmic restriction, to be 71 

explained in detail below, which does not appear to represent, in general, a real chromatographic 72 

system. 73 

On the other hand, MCR-ALS has many solutions which are mathematically correct for a 74 

given problem, although by proper selection of the initial state and application of natural 75 

restrictions, it is possible to find a solution satisfying a real underlying chemical model [30,31]. 76 

The latter feature may be an advantage, because a better representation of the chromatographic-77 

spectral data should translate into improved analytical performance.  78 

In this work, both simulated and experimental second-order liquid chromatographic 79 

systems with UV-visible or fluorescence detection are analyzed using PARAFAC2 and MCR-80 

ALS, in order to quantify analytes of interest under conditions of varying complexity (including 81 
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artifacts of various types and presence of potentially interferent species). The simulation study 82 

allows one to critically assess the conditions under which PARAFAC2 is able to model 83 

chromatographic changes in peak position and band shapes, visually illustrating the effect of the 84 

algorithmic restrictions on retrieved profiles. MCR-ALS was previously compared with 85 

PARAFAC2 and other models [32], although in the latter work emphasis was put on the 86 

essential step for choosing a suitable resolution method, i.e. determining the inner structure of a 87 

three-way array (trilinear or non-trilinear), and specific differences between PARAFAC2 and 88 

MCR-ALS were not explored. 89 

The selected experimental data correspond to the determination of: (1) various pesticides 90 

in fruit and juice samples from liquid chromatography with multi-wavelength UV-visible 91 

detection, and (2) polycyclic aromatic hydrocarbons (PAHs) in water samples from liquid 92 

chromatography with multi-wavelength fluorescence detection. The first experimental system 93 

illustrates the resolution of compounds of environmental concern in foodstuff, such as 94 

carbendazim (MBC), thiabendazole (TBZ), propoxur (PRO), fuberidazole (FBZ) and carbaryl 95 

(CBL) [33]. The latter was undertaken in view of the growing concern for food safety, as 96 

regulated by the European Commission [34] and the Food and Drug Administration [35], among 97 

other agencies. The second system encompasses the analysis of PAHs, a large class of ubiquitous 98 

aromatic compounds, originated through incomplete combustion of organic matter [36], which 99 

are either genotoxic and mutagenic or synergists in causing cancer [37]. The European legal 100 

limits for such contaminants were agreed upon by Regulation 1881/2006, fixing a limit for only 101 

benzo[a]pyrene (BaP), and defining it as a marker for the presence of the remaining PAHs [38]. 102 

However, the European Food Safety Authority suggested in 2008 the use of the sum of eight 103 

PAHs (PAH8), namely benzo[a]anthracene, chrysene, benzo[b]fluoranthene (BbF), 104 
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benzo[k]fluoranthene (BkF), BaP, dibenzo[a,h]anthracene (DBA), benzo[g,h,i]perylene (BgP) 105 

and indeno[1,2,3-cd]pyrene (IcP) [39]. This led to Regulation 835/2011, which fixed new limits, 106 

in particular for oils and fats [40]. 107 

Palpably, the regulations on the identification and/or determination of all these 108 

compounds of environmental concern in natural and food samples are constantly updated. 109 

Therefore, it is essential to generate improved analytical techniques for their determination in 110 

complex matrices. In this sense, the present report indicates that MCR-ALS provides the best 111 

analytical results, even in the presence of potential interferents in the test samples, by processing 112 

high-performance liquid chromatography coupled to multi-wavelength (UV-visible or 113 

fluorescence) spectral detection under isocratic conditions, which notably reduces the analysis 114 

time and consumption of organic solvents. 115 

 116 

2. THEORY 117 

2.1. Simulations 118 

Data have been synthesized for two systems: (1) simulated System 1, having two 119 

calibrated analytes and no interferents in test samples, and (2) simulated System 2, having two 120 

calibrated analytes and a single potential interferent in the test samples along with the analytes. 121 

All data arrays were built mimicking second-order chromatographic data (elution time-spectral 122 

detection), similar to those recorded for the experimental systems.  123 

The simulated signal-concentration relationship for component n is governed by the 124 

following equation: 125 

Mn = yn an bn
T          126 

 (1) 127 
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where Mn is the J×K pure-component matrix signal at concentration yn (J and K are the number 128 

of channels in each mode –time and spectra, respectively– and are both equal to 100), i.e., with 129 

elution times in the columns and spectra in the rows. The product (an bn
T) represents a bilinear 130 

pure-component matrix at unit concentration, obtained by multiplying the corresponding profiles 131 

an and bn in each data mode (of size J×1 and K×1 respectively). In equation (1), the superscript 132 

‘T’ indicates transposition. 133 

  Representative Gaussian elution time profiles an (n = 1, 2 and 3), partially overlapped in 134 

the time mode, are shown in Fig. 1A, although they change from sample to sample during the 135 

simulations. Various types of chromatographic shifts and band shape changes were introduced 136 

into these time profiles, in order to generate a comprehensive set of cases to be studied. The 137 

intention was to create a trend of growing complexity in the data, in the sense of increasing loss 138 

of trilineality. This was done to rigorously test the predictive ability of PARAFAC2 and MCR-139 

ALS towards analyte determination in the test sample sets. To generate the simulated data 140 

affected by the different chromatographic artifacts, the profile an in equation (1) is affected by 141 

sample-specific shifts and broadening effects, as described by the following expression: 142 

𝑎𝑛(𝑡, 𝑖𝑖) =  𝑘𝑛𝑖exp �− 4ln2(𝑡−𝑡𝑅𝑛−∆𝑡𝑛𝑖)2

(𝑤𝑛+∆𝑤𝑛𝑖)2
�       (2) 143 

where t represents each of the time sensors (from 1 to J), tRn and wn are the reference retention 144 

time and full width at half height respectively for component n (tR1 = 45, tR2 = 55, tR3 = 66, w1 = 145 

w2 = w3 = 8, all measured in sensor units), and ∆tni and ∆wni are the sample- and component-146 

dependent changes in position and width (the subscript i characterizes the sample and n the 147 

component). The value of ∆tni is given by (rni×f×tRn), where rni is a random number in the range 148 

0-1 (this random number is different for each component in each sample), and f is shown in 149 

Table 1 for each data set. In some cases ∆tni is positive for all samples, while in others ∆tni is 150 
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randomly positive or negative, as identified as 'S' or 'R' respectively in Table 1. The remaining 151 

parameter ∆wni has been set to zero in some cases (no width changes), or as equal to 152 

(wn×∆tni /tRn), with the sign accompanying the changes brought about by ∆tni (i.e., longer 153 

retention times leads to wider peaks and viceversa). Basically, equation (2) means that 154 

chromatographic peaks are shifted in each sample by an amount proportional to the retention 155 

time (f measures the relative degree of change), with a concomitant increase in width which is 156 

proportional to the change in retention time. Supplementary material is provided showing 157 

representative simulated chromatograms. 158 

 159 

Table 1. Details for the simulated data sets. 160 

Simulated System 1 Simulated System 2 
Case f a Sign b ∆wni c CD d Case f a Sign b ∆wni c CD d 

1 0 No shift No 0.00 1 0 No shift No 0.00 

2 0.5 S No 0.04 2 0.25 S No 0.00 

3 0.5 S Yes 0.10 3 0.25 S Yes 0.00 

4 0.5 R No 0.13 4 0.25 S No 0.05 

5 0.75 S Yes 0.15 5 0.5 S Yes 0.11 

6 1 S Yes 0.18 6 0.25 R Yes 0.13 

7 0.25 R Yes 0.19 7 0.5 R Yes 0.18 

8 0.75 R Yes 0.25 8 0.75 S Yes 0.23 

9 1 R Yes 0.27 9 0.5 R No 0.28 

10 0.75 R No 0.38 10 0.75 R Yes 0.36 
a The parameter f  controls the relative shift in peak position. b Signs of peak shifts: S, positive in 161 
all samples, R, randomly positive or negative depending on the sample. c The parameter ∆wni is 162 
the change in peak width, 'No' implies no changes across samples, 'Yes' implies width changes as 163 
described in the text. d CD, Complexity Degree (see definition in Section 4.1).  164 
 165 

Table 1 also includes Complexity Degree (CD) values, which will be defined below when 166 

discussing some PARAFAC2 characteristics. The final parameter in equation (2) is kni, a factor 167 
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employed to scale all elution time profiles an [defined at unit concentration as in eq. (1)] so that 168 

the total area under each of them is unitary, since the final time profile for a given component 169 

should represent its concentration changes from sample to sample. 170 

With regard to the spectral profiles (bn) for the sample components, they are shown in 171 

Fig. 1B, where considerably overlap can be observed among them. These profiles are normalized 172 

to unit length and are common to all samples, as is usual for absorption or fluorescence emission 173 

spectra. 174 

To produce the calibration data, the matrix signal for a typical sample (X) is given by the 175 

sum of the contributions of both analytes: 176 

X = M1 + M2          (3) 177 

with M1 and M2 given by equations analogous to (1) and (2). In all the simulated data sets, 178 

calibration samples were created following a 9-sample central composite design with 179 

concentrations in the range 0.0-1.0. In the simulated System 1, the analytes were considered to 180 

be present in fifty different test samples at concentrations which were taken at random from the 181 

range 0.0-1.0. On the other hand, the fifty test samples of simulated System 2 also contained the 182 

potential interferent, at concentrations taken at random from the range 0.2-1.5. In this case the 183 

test signals were given the sum of three Mn matrices, each of them provided by equations 184 

analogous to (1) and (2). Once the noiseless calibration and test matrices were built, Gaussian 185 

noise was added to all signals. The standard deviation was 0.0015 units, representing 1% with 186 

respect to the maximum calibration signal of each analyte at unit concentration. The data sets 187 

were then submitted to second-order multivariate calibration for the determination of both 188 

calibrated analytes as described in the next sections.  189 
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 190 

Fig. 1. Noiseless profiles employed for the simulations, in the elution time mode (A) and in the 191 
spectral mode (B), for sample components at unit concentration. Solid line, analyte 1, dotted line, 192 
analyte 2, dashed line, potential interferent. The time profiles in (A) are scaled to unit area under 193 
each profile, while in (B) they are normalized to unit length. 194 
 195 

 196 
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2.2. Second-order multivariate calibration 197 

2.2.2. Calibration with MCR-ALS 198 

The MCR-ALS model has been discussed in detail elsewhere [41-43] and therefore only 199 

a brief description is presented here. In this second-order multivariate method, an augmented 200 

data matrix (D) is created from each test data matrix and the calibration data matrices. In our 201 

case, the direction of columns is represented by the elution time and the direction of rows by the 202 

spectra, thus augmentation was implemented column-wise [44].  203 

The augmented data matrix D is mathematically decomposed into the contribution of 204 

individual components [44], assuming a bilinear model which is based on the assumption of the 205 

compliance to Beer’s law (or its analogues): 206 

D = C ST
 + E          (4) 207 

where the columns of D contain the elution time traces measured for different samples at each 208 

spectral sensor. The columns of C contain the temporal profiles of the species involved in all the 209 

experiments and the rows of ST represent the spectra related to these species. Finally, E is the 210 

matrix of the residuals not adjusted by the bilinear decomposition, which is performed through 211 

alternating least-squares [41]. 212 

The MCR-ALS algorithm requires an estimation of the number of components 213 

responsible for the analytical signal, and initialization with profiles close to the final results. The 214 

number of components is usually estimated from principal component analysis of the matrix D 215 

[41]. On the other hand, the initial spectra of the species can be conveniently estimated from the 216 

so-called purest spectral variables [45]. After MCR-ALS decomposition of D, concentration 217 

information contained in C can be used for quantitative predictions, by first defining the analyte 218 

score as the area under the elution time profile for the ith sample: 219 
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  220 

(5) 221 

where s(i,n) is the MCR-ALS score for component n in sample i. The calibration scores are used 222 

to build a pseudo-univariate calibration graph against analyte concentrations, predicting the 223 

concentrations of the test sample by interpolation of the test sample score.  224 

 225 

2.2.3. Calibration with PARAFAC2  226 

PARAFAC2 is performed by joining the training matrices with the unknown sample 227 

matrix into a three-way array. This model is a sequel of the original PARAFAC model, which 228 

aims at handling shifted, or more generally, varying profiles in a more efficient manner than 229 

PARAFAC [23]. If a three-way data set has an ideal trilinear structure, the matrix formulation of 230 

PARAFAC can be expressed as: 231 

Xi = A Gi BT + Ei          (6) 232 

where Xi is the ith frontal slab of the three-way array (a J×K matrix) containing the elution time 233 

profiles (columns) and the spectra (rows) for the ith sample, A and B are matrices containing the 234 

temporal and spectral loadings, respectively, Gi is a diagonal matrix holding the relative 235 

component concentrations (scores) in its diagonal, and Ei is a residual matrix. The sum of 236 

squared residual elements for all samples is minimized during data processing [46]. 237 

In real chromatographic systems, changes in elution time profiles occur among different 238 

runs, which can be regarded as a violation of the assumption of parallel proportional profiles 239 

underlying the PARAFAC model [46]. The PARAFAC2 approach [29,28] was developed to 240 

solve such problems, and its matrix formulation is: 241 

Xi = Ai Gi BT + Ei          (7) 242 

𝑠𝑠(𝑖𝑖, 𝑛𝑛) = � c
𝑖𝑖𝑖𝑖

𝑗𝑗=1+(𝑖𝑖−1)𝐽𝐽

(𝑗𝑗, 𝑛𝑛) 
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where Ai is the matrix holding the elution profiles of the components present in sample i, and the 243 

proposed function to minimize is: 244 

 245 

(8) 246 

Initialization is usually performed with the best profiles obtained after 10 runs, each up to 247 

a maximum of 80 iterations. Regarding algorithmic restrictions, non-negativity can be applied in 248 

the spectral mode (B profiles), which allows physically interpretable results to be obtained. 249 

However, restrictions cannot be easily imposed in the elution time direction when modeling 250 

varying chromatographic profiles from sample to sample. This is in contrast to MCR-ALS, in 251 

which both spectral and elution time modes can be independently restricted. This may be one of 252 

the causes of the better performance of MCR-ALS in the presently studied cases, although an 253 

additional PARAFAC2 constraint may be even more relevant in this regard. The latter requires 254 

that the cross-product of different Ai matrices has to be constant over all samples [47]: 255 

A1
T A1 = A2

T A2 = … = Ai
T Ai       (9) 256 

The main implication of this latter constraint in PARAFAC2 is that the elution profiles in 257 

different experiments may differ (due to peak shifting or band shape changes), but should 258 

maintain a similar degree of overlap. As discussed below, this restriction plays a key role in the 259 

analytical performance of the PARAFAC2 model. 260 

Identification of the chemical constituents under investigation is done with the aid of the 261 

estimated profiles, comparing them with those for a standard solution of the analyte of interest. 262 

As with MCR-ALS, analyte quantitation is performed in PARAFAC2 by first building a pseudo-263 

univariate calibration line with the analyte scores in the calibration samples (contained in the 264 

𝜎𝜎(𝐀𝐀𝑖𝑖 , 𝐁𝐁, 𝐆𝐆1, … , 𝐆𝐆𝑖𝑖) = ∑ �𝐗𝐗𝑖𝑖 − 𝐀𝐀𝑖𝑖𝐆𝐆𝑖𝑖𝐁𝐁T �
2𝐼𝐼

𝑖𝑖=1   
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diagonal of the corresponding Gi matrix) and then interpolating the analyte score in the test 265 

sample. The procedure is repeated for each newly analyzed test sample. 266 

 267 

2.3. Software 268 

  All calculations were made using in-house MATLAB 7.0 routines [48]. PARAFAC2 was 269 

implemented with the codes provided by Bro in his webpage [49]. The routines used for MCR-270 

ALS are freely available on the Internet [50]. All programs were run on an IBM-compatible 271 

microcomputer with an Intel Core(TM) i5-2310, 2.90 GHz microprocessor and 16.00 GB of 272 

RAM. 273 

 274 

3. EXPERIMENTAL 275 

3.1. Experimental System 1: diode array detection 276 

This system involves the recently described determination of several pesticides in fruit 277 

and juice samples from liquid chromatography with diode array detection (LC-DAD) [33]. The 278 

calibration set included 18 aqueous samples of the analytes in the following concentration ranges 279 

(in µg L−1): MBC, 0-228, TBZ, 0-207, PRO, 0-1720, FBZ, 0-99.2 and CBL, 0-136. The test set 280 

involved a total of 20 fruit and juice samples, processed as described in ref. [33], spiked with the 281 

analytes with random concentrations, all within the corresponding calibration ranges. All 282 

samples were injected into an Agilent HP 1200 liquid chromatograph, using instrumental 283 

parameters already reported [33]. The data were collected in the elution time range 0-9.5 min 284 

each 1.6 s (356 data points) and spectra were measured in the range 200-350 nm each 1 nm (151 285 

data points). The 356×151 LC-DAD matrices were already processed via MCR-ALS [33]. In the 286 

 14 



present report, a comparison is made with PARAFAC2 predictive results towards four of the 287 

analytes, MBC, TBZ, FBZ and CBL, which share similar concentration ranges. 288 

 289 

3.2. Experimental System 2: fluorescence detection 290 

In this case the analytes BbF, IcP, BaP, DBA, BgP and BkF were determined in water 291 

samples in the presence of the potential interferents BjF and BeP, using the chromatographic 292 

method developed in ref. [51], i.e., LC with fluorescence spectral detection. The experimental 293 

procedure and sample composition were the same as those described in the latter work; therefore 294 

they are not repeated here. However, a new data treatment was carried out: from the raw data 295 

matrices (collected with the excitation wavelength fixed at 300 nm, using emission wavelengths 296 

from 340 to 580 nm each 2 nm, and times from 0 to 7.20 min each 2.7 sec), the temporal mode 297 

was restricted to 2.43-7.20 min (matrices were of size 121×111), where coelution of the six 298 

analytes mentioned above occurs. 299 

The calibration set included 18 samples: 16 corresponded to the concentrations provided 300 

by a fractional factorial design at two levels, and the remaining two to a blank and to a solution 301 

containing all the studied PAHs at an average concentration. The tested concentrations were in 302 

the ranges 0.0-100 ng mL-1 for BbF and IcP, 0.0-50 ng mL-1 for BaP, DBA, and BgP, and 0.0-303 

20.0 ng mL-1 for BkF. The test set contained 20 samples at random concentrations of the studied 304 

analytes, including benzo[j]fluoranthene (BjF) and benzo[e]pyrene (BeP) as interferences (the 305 

concentrations of the latter were in the range 0-600 ng mL–1 and 0-1000 ng mL–1, respectively). 306 

LC-fluorescence data were collected using a liquid chromatograph equipped with a Waters 515 307 

pump connected to a Varian Cary-Eclipse luminescence spectrometer as detector. For additional 308 

instrumental details see [51].  309 
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4. RESULTS AND DISCUSSION 310 

4.1. Intuitive explanation of PARAFAC2 restrictions 311 

As discussed above, PARAFAC2 includes an important constraint during least-squares 312 

fitting of the three-way data to the model equation (6), i.e., that the cross-products of all Ai 313 

matrices should be equal in all samples. This implies two important consequences: (1) for every 314 

sample component n, the squared length of its elution time profile (the value of the product 315 

an
T an), should be constant across different samples, and (2) for every pair of components, the 316 

value of the product an
T an' (n ≠ n') should also be constant across samples. The latter is 317 

proportional to the degree of overlap between elution time profiles: if profiles are normalized, 318 

then parallel profiles yield an
T an' = 1 (full overlap), whereas orthogonal profiles give an

T an' = 0 319 

(null overlap). Intermediate situations lead to degrees of overlap between 0 and 1.  320 

These conditions are not universally met under general changes in chromatographic peak 321 

positions or shapes. For an illustrative example, Fig. 2 shows the changes in the squared length 322 

(an
T an) of typical elution profiles for various situations, for a peak of constant area (implying the 323 

same component concentration in all cases). In Figs. 2-I, 2-II and 2-III the peak gets wider but 324 

maintains the Gaussian shape, while Figs. 2-IV and 2-V display two tailing peaks with different 325 

widths. As can be seen, while the peak shapes change, the squared lengths also change, implying 326 

that the first requirement of the PARAFAC2 model is not generally met.  327 

 328 
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 329 

Fig. 2. Values of the squared length of changing elution time profiles in different 330 
chromatographic runs for a single analyte, keeping the area under the profiles constant. 331 

 332 

Fig. 3. Values of the mixed cross-products for changing elution time profiles in different 333 
chromatographic runs for a two-analyte system.  334 
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As regards the mixed cross-products (an
T an', n ≠ n'), Fig. 3A-I shows two typical 335 

Gaussian chromatographic peaks with low overlapping in the elution time direction, for which 336 

the cross-product (a1
T a2) is very small. If in a different chromatogram the peak shifts are 337 

identical, with no changes in band widths (Fig. 3A-II), the same value of (a1
T a2) will be 338 

obtained. For other situations, the product (a1
T a2) will also be small and approximately constant: 339 

(1) when the widths are identical but the shifts are different (Fig. 3A-III), (2) when the shifts are 340 

equal but the widths are different (Fig. 3A-IV), and (3) when both the shifts and widths are 341 

different (Fig. 3A-V). Thus changes in peak positions and widths throughout the different cases 342 

illustrated in Figs. 3A-I to 3A-V lead to small changes in the value of the profile cross-product 343 

between both components. This means that under low-overlapping condition, the constraint of 344 

constant mixed cross-products is verified. 345 

Under more serious overlapping in elution profiles, PARAFAC2 will be able to model 346 

changes in profiles from sample to sample, only if they satisfy these conditions: (1) changes in 347 

peak positions for different components are similar, and (2) no significant changes occur in the 348 

profile shapes. This can be visually appreciated in Fig. 3B-I, where two chromatographic traces 349 

are shown, overlapped in the elution time direction. For this particular pair of profiles, the degree 350 

of overlap (a1
T a2) is 0.55. In a different chromatographic run, illustrated by Fig. 3B-II, the shifts 351 

for both peaks are identical, and no changes occur in band widths, leading to the same value of 352 

(a1
T a2) as in Fig. 3B-I. This is the ideal situation for the successful application of PARAFAC2. 353 

However, for other situations, the product (a1
T a2) may significantly differ from the reference 354 

value of 0.55: (1) when the widths are identical for each profile but the shifts are different (Fig. 355 

3B-III), (2) when the shifts are equal but the shapes are different (Fig. 3B-IV), and (3) when both 356 

the shifts and widths are different (Fig. 3B-V). 357 

 18 



Comparison of Figs. 2 and 3 leads to the conclusion that the relative changes in 358 

overlapping degrees (a1
T a2) may be significantly larger than those in the squared length (a1

T a1), 359 

and therefore we propose a measure of the complexity degree (CD) for the various simulated 360 

systems, as the standard deviation of the values of (a1
T a2) across the data sets, each involving 59 361 

samples (9 calibration and 50 test samples).  362 

 363 

4.2. Results for simulated data 364 

The generation of the simulated data has been described in detail in the relevant Section 365 

2.1, with specific values of the CD parameter already provided in Table 1. To process the data, 366 

second-order multivariate calibration was performed in order to predict the analyte 367 

concentrations in all test mixtures (see Section 2.2). The first model applied to this analytical 368 

problem was PARAFAC2 (see Section 2.2.3), considering 2 or 3 components, depending on 369 

whether the potential interferent is absent or present in test samples. 370 

The results in terms of relative error of predictions (REP) are shown in Fig. 4 for all 371 

analyzed cases (Table 1), where REP is defined (in %) as the square root of the mean prediction 372 

error, relative to the mean analyte concentration in the calibration set. Specifically for the 373 

simulated System 1, where both analytes are calibrated and no potential interferents are present 374 

in test samples, the results are collected in Fig. 4A. It is apparent that as the complexity of the 375 

system increases, the algorithm performance deteriorates. This appears to confirm that the 376 

parameter CD quoted in Table 1, which measures the variability of the cross-product (a1
T a2) 377 

across samples, is an adequate indicator of the challenges faced by PARAFAC2.  378 

On the other hand, for the different cases of the simulated System 2, the corresponding 379 

results are shown in Fig. 4B. The correlation of predictive results with the CD parameter is less 380 
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clear, although it appears that PARAFAC2 finds difficulties in dealing with the presence of the 381 

potential interference, leading to poor analytical results, even in cases where chromatographic 382 

changes are almost negligible. Under these circumstances, the model has serious difficulties in 383 

achieving the second-order advantage. 384 

 385 

Fig. 4. Relative errors of prediction as a function of complexity degree. A) Simulated System 1. 386 
B) Simulated System 2. The REPs are the mean of the predictions for both analytes in the test 387 
sets, and the Complexity Degree is the standard deviation of the mixed cross-products for all 388 
samples [see equation (9)]. The black and white circles correspond to PARAFAC2 and MCR-389 
ALS results, respectively.  390 

 391 

  When unexpected sample components occur in test samples, the practical effect to restrict 392 

the data set according to equation (9) is shown in Fig. 5. The processing of a typical case of 393 

simulated System 2 via PARAFAC2 yields a rather artificial output for the time profiles of the 394 

test sample (Fig. 5B). They show a compensation effect with respect to a typical calibration 395 

sample (Fig. 5A) through the presence of negative signals. Partially negative analyte profiles are 396 

needed in Fig. 5B to maintain the cross-products (a1
T a3) and (a2

T a3) close to zero (1 and 2 397 

correspond to the analytes and 3 to the interferent), as required for a calibration sample (Fig. 398 

5A). It is very likely that this result explains the poor performance of PARAFAC2 for the 399 

simulated System 2 (Fig. 4B). 400 
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 401 

Fig. 5. Time profiles retrieved by PARAFCA2 for a calibration sample (A), and for a test sample 402 
(B) during a typical analysis of the simulated System 2.  403 
 404 

The MCR-ALS model was then applied to these simulated data. In Fig. 4, the prediction 405 

results for the ten cases of Table 1, both in the absence and presence of the potential interferent, 406 

clearly indicate a better performance of this method in comparison with PARAFAC2 for the 407 

quantitation of the analytes. The explanation of the better predictive ability of MCR-ALS relative 408 

to PARAFAC2 should undoubtedly be rooted in the fulfilment of the bilinear chromatographic-409 

spectral model in the former case, and in the lower flexibility towards chromatographic data in 410 

the latter. This outcome has been previously found in related applications [23,51]. 411 

 412 

4.2. Results for experimental data 413 

4.2.1 Experimental System 1 414 

 To compare the models discussed in the present report regarding this experimental 415 

system, we have selected the determination of four pesticides in the test samples, all of which 416 

contain potential interferents. The MCR-ALS prediction of the selected analytes MBC, TBZ, 417 

FBZ and CBL, whose concentration ranges are similar, were already provided in ref. [33], and 418 
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are now graphically shown in Fig. 6A. They lead to root mean square errors of prediction 419 

(RMSEP, expressed in µg L–1) as follows: MBC, 6.9, TBZ, 5.7, FBZ, 3.8 and CBL, 4.2. This 420 

corresponds to REP values (in %) of: MBC, 5.7, TBZ, 5.7, FBZ, 8.9 and CBL, 8.0. When 421 

applying the elliptical joint confidence region (EJCR) test to the plot of predicted vs. nominal 422 

concentrations for each of the four analytes [52], all ellipses are found to contain the ideal point 423 

of unit slope and zero intercept, with small sizes of the elliptical regions (see Supplementary 424 

Material). Specific details for the application of MCR-ALS can be found in ref. [33], although it 425 

is important to notice that initialization was made with spectral profiles based on purest 426 

variables, imposing non-negativity in all profiles and unimodality in elution time profiles for 427 

analytes, leaving blank and interfering signals as non-unimodal. The numbers of components 428 

considered were 7 or 8 (depending on the sample) in the time range 3.3-6.9 min where MBC, 429 

TBZ and FBZ were analyzed, and 4 in the time range 7.3-9.5 min, where CBL was quantitated 430 

(in all cases principal component analysis was applied to estimate the number of responsive 431 

components). Additional components besides the analytes were due to background signals and 432 

unexpected constituents of the test samples. 433 

 We now report the PARAFAC2 results, obtained by applying non-negativity in spectral 434 

profiles and employing the same number of components as for MCR-ALS. The results are shown 435 

in Fig. 6B, yielding RMSEP (in µg L–1) of 34.1, 31.8, 10.6 and 12.4 for MBC, TBZ, FBZ and 436 

CBL respectively, and REP values (in %) of 28.2, 27.2, 25.2, 23.5. These RMSEP values can be 437 

statistically compared to those rendered by MCR-ALS using various statistical tests; a suitable 438 

one is the randomization test proposed by Van der Voet to compare prediction errors [53]. The 439 

result indicates that the RMSEPs found by MCR-ALS are significantly smaller than the ones by 440 

PARAFAC2, since the probability values associated to the comparison are smaller than the 441 
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critical level of 0.05 for the four analytes. When the EJCR test was applied, although for some of 442 

the analytes the ideal point is contained within the ellipses, the sizes of the latter regions are 443 

considerably larger than those for MCR-ALS described above, indicating significantly poorer 444 

precision (see Supplementary Material). 445 

This confirms that the PARAFAC2 predictions are considerably worse than those 446 

provided by MCR-ALS, a result which can be ascribed to the challenges faced by PARAFAC2 447 

constraints for chromatographic profiles, especially when potential inteferents appear in the test 448 

samples. Indeed, the elution profiles for the interfering components present in fruit and juice 449 

samples considerably overlap with all analytes in the working time range (cf. Fig. 5 of ref. [33]). 450 

 451 

4.2.2 Experimental System 2 452 

These experimental data correspond to the analytical determination of BbF, BkF, BaP, 453 

DBA, IcP and BgP in samples which also contain BjF and BeP as potential interferences. During 454 

chromatographic analysis of this series of compounds using fast-scanning fluorescence emission 455 

for detection, severe overlapping in both data modes occurred, as illustrated in ref. [51]. 456 

The general procedure applied to this experimental system was analogous to that 457 

discussed above. For MCR-ALS analysis, matrix data for each test sample were augmented with 458 

the calibration data matrices and decomposition according to equation (4) was performed by 459 

imposing the restriction of non-negativity in both modes and unimodality in the temporal mode 460 

(except for a blank signal present in all samples). The number of MCR-ALS components was 461 

estimated using a principal component analysis and initialization was performed using the purest 462 

spectral variables. The prediction results are shown graphically in Fig. 6C, leading to RMSEP 463 

values (in ng mL–1) of 1.5, 5.3, 2.9, 2.3, 3.7 and 3.9 for BkF, BbF, BaP, DBA, IcP and BgP 464 
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respectively, and REP values (in %) of 15.3, 10.6, 11.0, 9.3, 7.4 and 15.7. It is apparent that the 465 

incorporation of potential interferences in the analyzed test analyzed does not preclude a good 466 

resolution of the analytical problem, with results comparable to those obtained in reference [51], 467 

although the presently discussed MCR-ALS data processing is slightly different. This outcome 468 

(i.e., the exploitation of second-order advantage) is consistent both with the abundant 469 

experimental evidence [16,26,51,54] as to the assumptions of the model [41].  470 

For PARAFAC2, the obtained RMSEP values are 16.2, 14.9, 11.3, 8.5, 9.8 and 13.7 ng 471 

mL–1 for BkF, BbF, BaP, DBA, IcP and BgP respectively, with REP% values of 36.0, 51.2, 11.5, 472 

10.6, 10.3 and 38.1, indicating that for some analytes the model is not adequate to the problem 473 

being analyzed. Indeed, using the same randomization test for comparing RMSEP values 474 

mentioned above, the significance of this indicator being larger for PARAFAC2 than for MCR-475 

ALS is confirmed by probabilities which are lower than the critical value of 0.05 for the analytes 476 

BkF, BbF and BgP. However, they are larger than 0.05 for BaP, DBA and IcP, suggesting 477 

similar predictive ability for the latter three compounds. In agreement with this result, 478 

comparison of the EJCR results for PARAFAC2 and MCR-ALS indicates that the sizes of the 479 

ellipses are comparable for BaP, DBA and IcP, but the ones for MCR-ALS are significantly 480 

smaller than those for PARAFAC2 in the case of BkF, BbF and BgP (see Supplementary 481 

Material). This result is consistent with reference [51], where PARAFAC2 could not be 482 

successfully applied when working with the whole chromatogram, which clearly represents a 483 

limitation. It is now possible to postulate a reasonable explanation for such behavior: 484 

chromatographic artifacts seriously affect the PARAFAC2 modeling of the data, especially when 485 

unexpected constituents occur. The comparison of Figs. 6C and 6D visually confirms the better 486 

prediction capability of MCR-ALS, although not as significantly as that implied by Figs. 6A and 487 
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6B for the experimental System 1, most probably as a result of a lower degree of time overlap 488 

among analytes and potential interferents in the experimental System 2.  489 

 490 

Fig. 6. Plots of predicted concentrations of the studied analytes as a function of the nominal 491 
values, in test samples with potential interferences. A) Experimental System 1, MCR-ALS, B) 492 
Experimental System 1, PARAFAC2, C) Experimental System 2, MCR-ALS and D) 493 
Experimental System 2, PARAFAC2. 494 
 495 

It may be noticed that this same experimental system has been previously studied using 496 

both PARAFAC2 and MCR-ALS, dividing the chromatographic axis in various time regions, 497 

which were processed separately. In this latter case, PARAFAC2 was reported to yield 498 

reasonably good results; however, this mainly refers to those regions where no contribution from 499 

the interferents appeared [51]. In the cases where the potentially interferent signals overlapped 500 
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with those for the analytes in the elution time mode, PARAFAC2 gave worse results in 501 

comparison with MCR-ALS, due to the causes discussed in detail in the present paper.  502 

 503 

4.3. Suggestions for PARAFAC2 improvement 504 

It has been shown that the PARAFAC2 model in its current version is strictly applicable 505 

mainly when: (1) there are no potential interferents in test samples, and (2) the changes in peak 506 

positions and shapes are moderate, so that the degree of overlapping between all pairs of elution 507 

time profiles are approximately constant across experimental runs. One direction in which 508 

PARAFAC2 could be improved for the former case, i.e., when unexpected sample components 509 

occur in test samples, is to apply some form of sample selectivity or correspondence between 510 

components and samples. This will inform the algorithm that the unexpected component is 511 

absent in the calibration samples, so that its score can directly be set to zero in the latter ones. 512 

The suggested modification might be accompanied by relaxing the need of having, in all 513 

samples, a constant cross-product of the interferent time profile with those for any other 514 

calibrated component. If these changes can be introduced into the PARAFAC2 model, then it is 515 

likely that the latter will improve its predictive ability when the achievement of the second-order 516 

advantage is needed. 517 

 518 

5. CONCLUSIONS 519 

Simulated and experimental second-order liquid chromatographic systems with multi-520 

wavelength (UV-visible or fluorescence) detection were analyzed to show the capability of 521 

MCR-ALS and PARAFAC2 to quantify the analytes under study in several problems of diverse 522 

complexity. From the simulated systems, it was demonstrated that the cross-product PARAFAC2 523 
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constraint produces artificial outputs when elution profile changes are severe and/or interferents 524 

are present in test samples. The most serious consequence of this phenomenon is that 525 

PARAFAC2 cannot achieve the advantage of second-order, even in systems of medium 526 

complexity.  527 

Experimental examples of MCR-ALS and PARAFAC2 combined to high performance 528 

liquid chromatography with multi-wavelength detection were employed to illustrate the rapid 529 

resolution of complex mixtures of analytes of environmental concern. The determinations have 530 

been carried out even in the presence of unexpected compounds, without the need of a complete 531 

chromatographic separation or alignment of elution time traces. In these experimental systems, 532 

as well as in the simulated ones, only MCR-ALS led to successful results, which highlights both 533 

the power and range of applicability of the latter model.  534 
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