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Abstract 

This work aimed to study the effect of the presence of Carrageenan (Carr) on the 

quinoa proteins (QP) structure and acid-induced aggregation. Carr significantly 

influenced the pH-solubility profile, the effect of the thermal treatment of QP, the 

fluorescence emission spectra. The QP dispersions were acidified by the addition of 

glucono-δ-lactone (GDL); the initial soluble aggregates became into smaller structures 

that close to the isoelectric point, formed larger aggregates due to the neutralization of 

QP charges. The QP acid-induced aggregation process as well as the size of the 

aggregates were affected differentially depending on the Carr concentration added. 

The QP concentration and pH required to form gels were determined by a qualitative 

procedure absence and presence of different Carr concentrations. The least QP 

concentration to form gels was decreased by the presence of Carr; in addition, the pH 

range of gelation was more acid. Acid-induced aggregation process seems to be a 

competition between QP-QP and QP-Carr interaction, and both biopolymers are 

synergically responsible for the formation of the gel matrix. 

Keywords: quinoa proteins, carrageenan, acid – induced aggregation/gelation   
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1. Introduction 

 

Functional property of aggregation, protein – protein interactions, is studied for 

edible proteins in food systems. Proteins have a potential use depending on their 

physical and physiochemical properties (Totosaus, Montejano, Salazar, & Guerrero, 

2002). Vegetable proteins aggregation study is trending topic lately because they can 

give new characteristics to obtain novel food with different flavor, odor or digestibility. 

The aggregation stage after denaturation strongly affects the resulting elasticity and 

mechanical properties of protein-based gels (van Vliet, Martin, & Bos, 2002), so the 

study of the factors affecting protein aggregation in diluted systems is relevant to 

assess the effect of these factors on the gel formation and characteristics. 

 The Andean pseudo cereal, quinoa (Chenopodium quinoa Willd.), contains high 

levels of proteins with an appropriate amino acid balance for human nutrition. 

Researchers are paying attention to quinoa proteins (QP) since it has a higher protein 

amount than other grains, high levels of lysine and methionine, and in addition it is 

gluten-free and non-allergenic (Nongonierma, Le Maux, Dubrulle, Barre & FitzGerald, 

2015). Quinoa flour functional and physicochemical properties has been studied lately, 

but the QP properties are not well known yet (Mäkinen, Zannini, Koehler, & Arendt, 

2016).  

The structure of QP, mostly globulins, could be influenced by the medium 

conditions such as pH, ionic strength, and temperature, among others. It is known that 

the polypeptides from Chenopodin (globulin 11S) subunits, the major protein of quinoa 

seeds isolate, are soluble at alkaline pH due to their net negative charge (Elsohaimy, 

Refaay, & Zaytoun, 2015; Steffolani et al., 2015).  

Protein functional properties allows solubility, formation of a fine and elastic gel 

network, or make possible emulsifying activity. These activities can change depending 

on the medium conditions. Some of QP functional properties has been under research 

in the last years as emulsifying, foaming and gelation (Elsohaimy et al., 2015; Mäkinen, 

Zannini, & Arendt, 2015; Ruiz et al., 2016). In gelation property, it was seen that a 

weak coagulum of QP can be formed depending on the heat-treated pH (Mäkinen, 

Zannini & Arendt, 2015). The aggregates can be held together not only by hydrogen 
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bonds and hydrophobic interactions, but also by covalent disulfide bridges, which QP 

are known to have the ability to form. This behavior explains a stability over a broad 

pH-range, secondary aggregation leads to a precipitation process at longer time 

(Mäkinen et al., 2016). Gel characteristics depend on the formation conditions like the 

thermal treatment (TT) at certain pH to make possible the disulfide bond formation in 

the aggregation process. The TT of the proteins before acidifying the systems may 

induce the formation of a stronger network due to covalent interactions, and the gel 

may have a coarser structure with larger pore size, affecting the textural properties of 

the gels formed (Nishinari, Fang, Guo, & Phillips, 2014). Disulfide – mediated QP 

aggregation at different pH levels has been studied previously (Mäkinen et al., 2016). 

Some researches assured that the denaturation and aggregation mechanisms of 

quinoa globulins are strongly pH – dependent, while the secondary structure is retained 

some unfolding occurred at alkaline conditions. Aggregation and gelation processes 

behavior depends on the conditions due to the QP globulins structural changes 

(Mäkinen et al., 2015).  

One of the acids currently used, and that has replaced bacterial acidification in 

the dairy industry, is glucono-δ-lactone (GDL), which can acidify the medium by 

breaking its carboxylic ring in solution. The final pH is a function of the GDL 

concentration, and the pH decrease depends further on the temperature of the medium 

(Hidalgo, Riquelme, Alvarez, Wagner, & Risso, 2012). 

A commonly used polysaccharide in the food industry is the carrageenan, which 

is used as a stabilizer, thickener and gelling agent. It comes from a family of sulfated 

polysaccharides obtained from certain species of red seaweeds. There are three types: 

kappa (κ-), iota (ι-) and lambda (λ-) carrageenan, they vary on the number of sulfate 

groups. This work used the ι-Carrageenan (Carr) which carries two sulfate groups per 

disaccharide over its backbone, with a pKa around 2 (Campo, Kawano, Silva, & 

Carvalho, 2009). 

The aim of this work was to study the effect of the thermal treatment and the 

presence of Carr on QP structure as well as the acid-induced aggregation process 

carried out at different conditions. In addition, the qualitative determination of the 

minimun concentration of thermally treated QP and the pH range required to form acid-
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induced gels were determined in the absence and presence of different Carr 

concentrations.  

2. Materials and Methods 

2.1. Materials 

Partially defatted quinoa flour was purchased from Los Andes (Cochabamba, 

Bolivia). ι-Carr and GDL were purchased from Sigma Aldrich (Sigma Chemical, St 

Louis, MO, USA). The rest of the chemical reagents had analytical quality.  

2.2. Quinoa proteins  

QP recovery was carried out as Abugoch protocol with some modifications 

(Abugoch, Romero, Tapia, Silva, & Rivera, 2008). Briefly, solubilization was carried out 

at pH 8.5 and precipitation at pH 4.5. Protein quantification was carried out by Bradford 

method.  

2.3. Solubility 

The solubility of QP 10 g/L was assessed as a function of pH by the procedure 

described by Abugoch (Abugoch et al., 2008) in the absence and presence of Carr. 

Different concentrations of Carr were assayed (0.00, 0.02, 0.04, 0.06, 0.08, 0.10 and 

0.50 g/L) in the pH range (1 – 10) in 10 mM acetate -10 mM phosphate – 10 mM HCl–

Tris buffer (Ac-Pi-Tris). Samples were centrifuged at room temperature (1000 g, 10 

min) and protein solubility was measured in the supernatant by Bradford method. 

2.4. Effect of thermal treatment on QP structure 

Thermal treatment of QP in NaOH 0.5 N was carried out at 95°C for 10 minutes 

in the absence of Carr. The structure of QP thermally treated (QPTT) was 

characterized by fluorescence emission spectra, determination of hydrodynamic 

diameter (Dh) distribution and ζ-potential (ζ) by dynamic light scattering (DLS) in the 

presence and absence of Carr 0.16 g/L. All the dispersions were centrifuged at 10000 

g for 10 minutes. Dispersions of soluble QPTT 0.5 g/L were prepared from the 

supernatant. As a control, QP without TT was also assayed. 

The fluorescence emission spectra (300 – 400 nm) were carried out by exciting 

at 280 nm with an AMINCO-Bowman spectrofluorometer Series 2 (AB2, Spectronic 

Instruments, Rochester, New York, United States). It was not necessary to correct the 

spectra for the effect of the internal filter, because a triangular cuvette was used.  
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The determinations of Dh and ζ were done using a Zetasizer SZ-

100 Nanopartica (HORIBA Ltd, Kyoto, Japan). Measurements in the ZetaSizer were 

the average of 2 complete runs (3 cycles each) performed at 25°C. The ζ was 

calculated by the ZetaSizer software, it is measured as electrophoretic mobility and 

converted to ζ-potential measures with the Helmholtz-Smoluchowski equation by the 

instrument’s software (Wall, 2010). 

2.5. Acid-Induced Aggregation  

2.5.1. Aggregation kinetics process 

Acid-induced aggregation of QPTT was studied in dilute regime to avoid 

gelation. QP (0.5 g/L) samples were prepared at pH 8.5, thermally treated and then 

added with different Carr concentrations up to 0.5 g/L. Acid-induced aggregation was 

initiated by GDL addition at different GDL/QPTT ratio (R): 0.17; 0.33; 0.66; 1.00 and 

1.33. During the acid-induced aggregation process, turbidity in the visible range (420 to 

650 nm) and pH were recorded every 60 seconds. The spectrum was recorded with a 

diode array Spekol 1200 spectrophotometer (Analytik Jena AG, Jena, Germany). All 

determinations were made at 30 °C.  β value, a parameter related to the particles size 

in solution, were calculated using the Eq. 1. 

β = 4.2 +  
𝜕(logτ)

𝜕(log 𝜆)
     (Equation 1) 

where 𝜕(log 𝜏)/𝜕(log𝜆) is the change of turbidity in function of the wavelength, and 4.2 

is the term resultant of equation reductions for the system (Risso, Relling, Armesto, 

Pires, & Gatti, 2007).  

2.5.2. Confocal Laser Scanning Microscopy (CLSM) 

Confocal laser scanning microscopy images were obtained with an inverted 

microscope NIKON C1SiR PLUS (Nikon instruments) using an excitation wavelength of 

543 nm and a 560 – 600 nm emission filter. Samples (QPTT 0.5 g/L) were stained by 

adding an aqueous solution of 0.05 g/L Rodamine B in each sample before acidification 

with different R. The samples were placed in Lab-tek ® transparent plates to take the 

images, and incubated at 30°C for 1 h to allow the GDL total hydrolysis.  

2.6. Gelation Conditions Determination 

Mäkinen et al. (Mäkinen et al., 2015) carried out the gelation of QPTT 20 g/L 

acidifying with R=0.33. In order to qualitatively determine the minimum QPTT 
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concentration required to form gels, different concentrations of QPTT were obtained by 

proper dilution with diluted NaOH at pH 8.5. QPTT concentrations from 3 g/L to 40 g/L 

were assayed acidifying with a fixed R=0.33. The gel forming conditions were 

determined by turning the tubes upside down, after 24 h of incubation. When the 

sample did not fall or slip it was considered gel-formation (Olivos-Lugo, Valdivia-López, 

& Tecante, 2010). 

Once the minimum QPTT concentration required for gelation was determined 

with a R fixed, it was studied a range for the R required to obtain gels was assessed by 

setting the QPTT concentration fixed as 24 g/L, twice the minimum concentration of 

QPTT required for gelation (with an R equal to 0.33, QPTT, 12 g/L) to ensure a wide 

range where we can change the R to study its effect. The effect of R and Carr 

concentration (0 to 0.05 g/L) on the required QPTT concentration for gelation was 

evaluated at fixed QP concentration (24 g/L). Two different conditions were tested:  

i) QP was thermally treated and then added with Carr; and  

ii) QP was added with Carr, and the mixtures were thermally treated.  

The pH was determined after 24 hours of incubation to ensure the complete 

GDL hydrolysis. 

2.7. Statistical analysis 

Samples were carried out at least by triplicate and the results were reported as 

means with standard deviations. 

3. Results  

3.1. Carr effect on QP solubility 

 The solubility of QP and QP – Carr dispersions as a function of pH is shown in 

Fig. 1. In the absence of Carr, QP showed a solubility profile typical for vegetable 

proteins: highly insoluble around pH 4 to 5 with higher solubility around pH 9 to 11. 

Similar results have been reported before for soy systems (Ortiz, Puppo, & Wagner, 

2004).  

QP showed higher solubility in Carr presence, around pH 2.9 and 5.5 (close to the 

IEP), than QP in solution in the absence of Carr. On the other hand, the presence of 

Carr produced a decrease in the solubility of QP between pH 1 and 2.9 and between 

pH 5.5 and 10.  
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The same behavior was reported when the solubility of soy protein isolate was 

studied at different pectin concentrations at different pH. Protein solubility increased 

with pectin addition close to its IEP (between pH 4 and 5) whereas pectin addition 

decreases the soy protein solubility at higher and lower pH values. Moreover, the 

presence of pectin also affected the amount and size of the protein aggregates 

(Jaramillo, Roberts, & Coupland, 2011). 

3.2. Effect of Carr and thermal treatment on QP structure 

3.2.1. Fluorescence Emmision Spectra Fluorescence emission of samples was 

determined between 300 and 400 nm, exciting at 280 nm, and the results are shown in 

Figure 2. The fluorescence emission spectrum of the QP (control sample) has a 

maximum around 330 nm, which was found previously (Abugoch et al., 2008) in a QP 

isolate solubilized at pH 9. This indicates that the QP are keeping their native structure. 

On the other hand, it is observed that the spectrum also shows a second superimposed 

peak with the first peak at a wavelength of approximately 360 nm. This shoulder could 

be attributed to the presence of some Trp exposed to the solvent: fluorophores in a 

polar environment present less energy fluorescence emission. 

QPTT showed a redshift of the spectrum when compared to the control, 

indicating a higher exposure of the fluorescent amino acids to the medium. This would 

be in agreement with a partial unfolding of the polypeptides because of the thermal 

treatment effect. In the presence of Carr a redshift of the spectrum occurred, in a 

smaller magnitude than the observed in samples with the thermal treatment. Carr may 

induce conformational changes of QP, allowing fluorescent amino acid exposition. It is 

to be noted that the redshift of the fluorescence emission spectrum induced by the 

thermal treatment is lower in the presence of Carr than in its absence, suggesting that 

Carr has a protective effect against the thermal denaturation of the proteins. 

3.2.2. ζ – Potential and hydrodynamic diameter 

Fig. 3 A shows the ζ-potential measurements obtained for the studied samples. 

The ζ-potential of the QP sample was approximately – 35 mV. The TT produced a 

slight decrease to – 42 mV, probably due to the higher exposure of ionizable groups to 

the solvent, as a result of QP conformational changes. A significant decrease in the ζ-

potential was produced in the presence of Carr, probably by the interaction between 
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QP and Carr or to the decrease of available counterions. TT did not affect significantly 

the ζ-potential of QP in the presence of Carr, may be due to the main contribution of 

Carr to the ζ-potential value. 

In the Dh measurements (Fig. 3 B) it was seen that the TT increased the size of 

the QP soluble aggregates, probably due to a decrease in the degree of compactness. 

The presence of Carr produced an increase in the size of the soluble aggregates, being 

its effect higher for QP when it is compared with QPTT. The presence of Carr may be 

inducing the self-aggregation of QP due to the excluded volume effect.  

3.3. Acid-induced aggregation 

3.3.2. Kinetics of acid-induced aggregation 

The effect of R on the acid-induced aggregation process of QPTT (0.5 g/L) was 

studied. The parameter β, related to the size of the aggregates was measured as a 

function of the time and pH and the results are shown in Fig. 4.  

A similar behavior was observed in the QPTT aggregation process when R was 

0.66, 1.00 and 1.33. Firstly, the β value decreased, which could be related to a 

decrease of the average size of the aggregates, and later, it increased with time and 

acidification, indicating that they formed larger aggregates at the end of the time 

assayed. This behavior (decrease and increase of the aggregate size) is characteristic 

for the acid-induced aggregation of proteins (Hidalgo et al., 2012) and it can be 

explained considering that the pH variation of the medium induces, in a first instance, a 

slow dissociation of the soluble protein aggregates. When the pH gets close to the IEP 

of the proteins, they lose their charges and the repulsion between them decreases, 

allowing them to interact and form the aggregates, destabilizing the colloids formed in 

the solution. In the first stage, the aggregates formed could be restructured to form 

larger aggregates, through hydrophobic interactions (Hidalgo et al., 2012). It is to be 

noted that the higher the added GDL concentration, the lower the values of the 

parameter β during the first stage. The minimum β value was reached at pH 6 and, as 

the R increased, due to the higher acidification rate (higher R values), this minimum 

was reached faster but always at the same pH. This phenomenon could be explained 

considering that the increase in the GDL concentration produced the acceleration and 

magnification of the initial dissociation of the QPTT aggregates. However, different R 
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values did not alter the pH at which dissociation of initial aggregates occur, suggesting 

that this phenomenon exclusively depends on the QP charge. Besides, larger final 

aggregates were produced when R values were higher due to the restructuring phase 

of the aggregates. This may be due to relatively non-specific protein – protein 

interactions because there is less time to restructure at faster acidification rate 

(Mäkinen et al., 2015).  

It is to be noted that below pH 6 the QP aggregates increases their size due to 

protein – protein interaction. In this pH range, the high capacitance of QP promote the 

QP-QP interaction through charge regulation mechanism (Montellano Duran, Spelzini, 

Wayllace, Boeris, & Barroso da Silva, 2017).  

3.3.3. Fig. 5 shows the evolution of parameter β as a function of pH and time in the 

presence of different Carr concentrations. It can be observed that Carr had a 

significant effect on the kinetics of β parameter variation. The presence of Carr 

delayed the dissociation of the aggregates, not only the time at which the 

smallest aggregates (β minimum value) was obtained, but also the pH in which 

this phenomenon was observed. When the lower Carr concentrations tested 

(0.02 and 0.04 g/L), the β vs time and pH profiles were similar to the QP in the 

absence of Carr. On the other hand, at Carr intermediate concentrations (0.06 

and 0.08 g/L), the pH at which the smaller aggregates are formed were 

significantly decreased and the subsequent aggregation step did not occur. The 

higher Carr concentrations (0.1 and 0.5 g/L) produced a different behavior, 

being the stage of dissociation of the aggregates not observed in most cases. 

Confocal laser scanning microscopy (CLSM) 

The confocal images of QPTT and QPTT – Carr obtained by CLSM after 

acidifying with different R values are shown in Fig. 6. It was found that the morphology 

of the aggregates depends on the added amount of GDL. The initial pH of the systems 

was 8.5 and a higher R reach lower pH final values. The aggregates formed in the 

systems with higher R values have a particulated form, typically seen in aggregates 

formed at acidic pH near to the IEP. There are two positions about how the aggregates 

form: 1) the particles are formed by micro phase separation of smaller aggregates (Ako 

et al., 2009) and 2) a nucleation and growth model explain the formation of the particles 
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(Bromley, Krebs, & Donald, 2006). Both models explain different paths for the 

formation of bigger particles from smaller ones in solution. At higher QPTT 

concentrations both paths can lead to the gel matrix formation by protein – protein 

interactions. Comparing the results for the same R value, aggregates observed in 

QPTT and QPTT – Carr systems have similar form, but the aggregates in the QPTT – 

Carr systems are less interconnected than those in absence of Carr.  

3.4. Acid-induced gelation 

The acidification at higher QPTT concentrations is expected to result in a gel 

network formation, if conditions are appropriate. The gel properties depend on the 

protein concentration, the rate of pH decrease, the final pH of the system and the 

presence of cosolutes or copolymers. The minimum QPTT concentration required to 

form a gel was determined to be 12 g/L with R: 0.33. Above the critical gel 

concentration a solid system is formed that is sustainable, but at lower QPTT 

concentrations, the system flows or collapses under gravity. Considering this result, the 

pH and acidification conditions required to form gels from a suspension of QPTT 24 g/L 

were studied. Close to the IEP, up to the critical protein concentration, the acid-induced 

aggregation process leads to gelation or precipitation, the gels or precipitates consist of 

agglomerates of large spherical particles (Zhang & Vardhanabhuti, 2014). Fig. 7 A 

shows the pH values measured for each R values tested and it distinguishes between 

the ones that formed gels (filled) and those which not (empty). As expected, an inverse 

relationship was observed between the final pH obtained and the GDL concentration 

added in the systems. It was observed that the systems were able to form a gel if the 

pH was above 2.9 and below 5.5, which is achieved using an R between 0.26 and 1.3. 

As was previously discussed, this pH range is in agreement with that determined for 

the charge regulation mechanism (Montellano Duran et al., 2017). If the pH is 

extremely acid or the rate of acidification is high, the proteins precipitate, being unable 

to form soluble aggregates or gel structures. On the other hand, as was discussed 

before, if the medium is not acid enough, proteins do not reach the IEP and their 

aggregation do not take place. 

 In addition, the minimum QPTT concentration required to form gels as a function 

of R were evaluated and the results are shown in Fig. 7 B. It is to be noted that higher 
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QPTT concentrations were required for the gel formation when R increased. This could 

be explained since more protein would be necessary to neutralize the protons released 

by the GDL to reach an appropriate pH to form the gel matrix.  

Different characteristics can be obtained adding a polysaccharide to the protein 

system which leads to the gel formation. Depending on the protein – polysaccharide 

interaction and the degree of thermodynamic compatibility of the mixed systems, gels 

with particular structures may be obtained  (Picone & da Cunha, 2010). This affects not 

only the gels rheology, microstructure, appearance and water holding capacity but also 

the minimum conditions required for gelling. The pH range (or added GDL, R) required 

for gels formation from [QPTT] = 24 g/L with different Carr concentrations was tested, 

as shown in Fig. 8. Two different thermal treatments were assayed as section 2.6 

propose. There was not much difference between the systems heated together with the 

ones heated separately. The presence of Carr modified the maximum pH at which gels 

were formed: a more acid pH was required for gelation. This is in agreement with the 

aggregation experiments: the presence of Carr decreased the pH at which the rate of 

aggregation exceeds the rate of dissociation of the aggregates, QPTT systems added 

with Carr required a more acidic medium to form aggregates, and subsequently, gels. 

This behavior was noticed for all Carr concentrations tested, except for the higher one 

(0.5 g/L). This could be because the presence of a higher Carr concentration modified 

the QPTT aggregates stability and this changed the observed behavior. The minimum 

QPTT concentration required to form gels was determined in the presence of different 

Carr concentrations, using R: 1, as shown in Fig. 9. The minimum QPTT concentration 

to form gels decrease in the presence of Carr. An increase in the polymer 

concentration favors the formation of aggregates due not only to higher total amount of 

polymer in the systems but also to their interaction (Picone & da Cunha, 2010). 

4. Discussion 

The effect of Carr on QP solubility may be explained considering the interaction 

between them. This interaction was previously studied and it was found that below the 

IEP of QP, both biopolymers in the system carries opposite electric charge, allowing 

them to interact through coulombic attraction whereas around the IEP the presence of 

Carr modulated the charge of QP allowing their electrostatic interaction. At neutral and 
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alkaline pH the presence of Carr diminishes the QP solubility due to the excluded 

volume effect (Montellano Duran et al., 2017; Steffolani et al., 2015). 

The QP thermal treatment  increased the protein aggregates size due to protein 

denaturalization and the presence of Carr decreased the ζ-potential due to the Carr 

charges.   

Acid-induced aggregation and gelation process begins at pH 8.5, where QP 

solubility in the presence of Carr decrease. QP solubility increase in the presence of 

Carr when the system get close to the IEP (between 2.9 and 5.5) during the 

acidification. This pH range is also where QP and Carr interacts electrostatically by the 

charge regulation mechanism (Montellano Duran et al., 2017).  

Analyzing the β parameters during the QPTT acidification, in absence of Carr, it is 

remarkable that the R value may have an important effect on the structure and 

characteristics of the QPTT gels. In fact, for the lowest R assayed (0.17), there were no 

significant changes in β values during evolution, indicating that the dissociation and 

subsequent aggregation processes did not occur. This behavior may be due to the 

protons quantity, leading to an R insufficient to neutralize the QP charges, in the time 

assayed. Thus, the medium pH did not reach pH 6, so the initial dissociation could not 

take place and neither could the further aggregation. When R: 0.33 was assayed, the 

QP aggregate size decreased close to pH 6 but the restructuring phase was not 

observed since the pH reached is not close enough to the IEP. In the presence of Carr, 

a decrease in the pH required to dissociate the initial aggregates was produced 

because of an increase of the negative charge. In addition, the presence of Carr 

avoided the formation of larger aggregates once the initial aggregates were 

dissociated; it is probably that the aggregation process (QP – QP interaction) was 

competing with the complexation process (QP – Carr interaction). This is in agreement 

with the fact that as higher the Carr concentration was, the β value obtained was lower.  

Two stages may be distinguished during the acid-induced aggregation of QP: 1) in 

alkaline, neutral an slightly acid media (from pH 8.5 to pH 6.0), the partial neutralization 

of QP takes place and the size of the soluble aggregates decrease, 2) the pH gets 

close to the IEP of QP, the charge regulation mechanism allows the QP – QP 

interaction and the size of the soluble aggregates increases. The presence of Carr 
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change this behavior, leading the aggregation at lower pH or not going through the 

decrease in size of the initial aggregates. 

The critical QPTT concentration to form a gel network was found to be 12 g/L at R: 

0.33 whereas an R between 0.27 and 1.3 was necessary to obtain a gel with a QPTT 

concentration of 24 g/L. The final pH of these gels were between 2.9 and 5.5, denoting 

that the QP charges are in the pH range where the QP have the capacity to regulate 

their charges to interact between them.The presence of Carr does not compensate the 

QPTT concentration decrease required to form gels, even if the total polymer 

concentration (QP + Carr) in the mixture is considered. This could be because there is 

an interaction between QPTT and Carr that promotes the acid-induced gelation. 

5. Conclusions 

QP solubility is diminished in the presence of Carr in the pH range between 1 

and 2.9 and 5.5 and 10, and it is increased between 5.5 and 10, where QP have the 

charge regulation mechanism. The presence of Carr induces conformational changes 

in QP increasing the size of the aggregates and produced the increase in the 

magnitude of the negative ζ – potential. In addition, Carr protects the QP from the TT 

when it is present in the system. 

Both in the acid-induced aggregation and gelation process the presence of Carr 

makes necessary a more acid pH to form the larger aggregates and gel networks. The 

presence of Carr decrease the QPTT concentration needed to form the network. 

During the acid-induced aggregation process seems to be a competition 

between the QP – QP interaction and the QP – Carr interaction; however, at higher 

concentration of QP, both biopolymers are synergically responsible of forming the gel 

matrix. 
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Figure captions 

Figure 1: QP solubility at different Carr concentrations in the pH range between 1 and 

10. Temperature 30°C. Buffer Ac-Pi-Tris (10 mM for each). 

Figure 2: Fluorescence emission spectra (300 – 400 nm) of QP and QP – Carr with 

and without TT at pH 8.5. Buffer Ac-Pi-Tris 10 mM. Temperature 30°C. λexc = 280 nm. 

Figure 3: A) ζ – potential, and B) Hydrodynamic diameter of QP and QPTT samples in 

the absence and presence of Carr. Temperature 25°C. Buffer Ac-Pi-Tris 10 mM, pH 6. 

Figure 4: β parameter evolution as a function of pH and time in a solution with 

different R values. R=0.17 (--), R=0.33 (--), R=0.66 (--), R=1.00 (--), R=1.33 (--

). QPTT concentration 0.5 g/L. Temperature 30°C. A) β parameter in function of the time 

(minutes) and pH, B) β parameter in function of the time (minutes), C) β parameter in 

function of the pH.  

Figure 5: β parameter evolution during the acid-induced aggregation of the QPTT 

(0.5 g/L), at different R values as a function of pH in a solution with different Carr 

concentrations: [Carr]=0 g/L (--), [Carr]=0.02 g/L (--), [Carr]=0.04 g/L (--), 

[Carr]=0.06 g/L (--), [Carr]=0.08 g/L (--), [Carr]=0.1 g/L (--), [Carr]=0.5 g/L (--). 

Temperature 30°C. A) R=0.33, B) R=0.66, C) R=1.00, D) R=1.33.  

Figure 6: Confocal laser microscopy images from QPTT (0.05 g/L) and QPTT (0.05 

g/L) + Carr (0.04 g/L) with different R. 

Figure 7: A) Gel formation capacity and final pH reached for QPTT concentration 24 

g/L at different R. B) QPTT concentration needed to form gels at different R values. 

Figure 8: Minimum and maximum A) R necessary to form gels with the different Carr 

concentrations. B) pH at which gels are formed with the different concentrations of 

Carr. Temperature 30°C. 

Figure 9: QPTT minimum concentration necessary to form acid-induced gels as a 

function of Carr concentration. Initial pH 8.5. Temperature 30°C. R: 1. 
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Highlights 

 

1) Quinoa proteins (QP) aggregate between pH 2.9 and 5.5 

2) Higher acidification rate increases the size of the QP aggregates 

3) The acid needed to form a gel network depends on the QP concentration 

used 

4) In the presence of carrageenan, a more acid pH is required to aggregate QP 
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