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Abstract  1 

Purpose: glycerol usage is increasing in food industry for human and animal nutrition. This 2 

study analyzed the impact of glycerol metabolism when orally supplemented during the 3 

early stage of rat liver carcinogenesis.  4 

Methods: Wistar rats were subjected to a 2-phase model of hepatocarcinogenesis (initiated-5 

promoted, IP group). IP animals also received glycerol by gavage (200 mg/Kg body 6 

weight, IPGly group). 7 

Results: glycerol treatment reduced the volume of preneoplastic lesions by decreasing the 8 

proliferative status of liver foci, increasing the expression of p53 and p21 proteins and 9 

reducing the expression of cyclin D1 and cyclin-dependent kinase 1. Besides, apoptosis was 10 

enhanced in IPGly animals, given by an increment of Bax/Bcl-2 ratio, Bad and PUMA 11 

mitochondrial expression, a concomitant increase in cytochrome c release and caspase-3 12 

activation. Furthermore, hepatic levels of glycerol phosphate and markers of oxidative 13 

stress were increased in IPGly rats. Oxidative stress intermediates act as intracellular 14 

messengers, inducing p53 activation and changes in JNK and Erk signaling pathways, with 15 

JNK activation and Erk inhibition. 16 

Conclusion: the present work provides novel data concerning the preventive actions of 17 

glycerol during the development of liver cancer and represents an economically feasible 18 

intervention to treat high-risk individuals. 19 

 20 

Keywords: proliferation; apoptosis; glycerol; liver preneoplasia; oxidative stress  21 

 22 

23 
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1 Introduction 24 

Glycerol (propane-1,2,3-triol) is a viscous, colorless and odorless liquid, with sweet taste 25 

and completely soluble in water and alcohols. Because of its physicochemical properties 26 

glycerol is used in a great number of commercial products including cosmetics, personal 27 

care products, pharmaceutical formulations, foods and beverages [1, 2]. Glycerol use is 28 

increasing in food industry. Since it gives sweet taste but it does not induce insulin 29 

secretion during digestion, glycerol is commonly used as an artificial sweetener, especially 30 

in low-fat foods. Glycerol is also used as a thickening agent and a preserving additive in a 31 

variety of comestible products [3]. Besides, it has been proposed the use of glycerol as a 32 

food supplement in animal diets and it has also been used for rehydration or exercise 33 

performance in animals and even humans [4, 5]. Toxicity data for oral glycerol 34 

administration indicate that it is safe, with infrequent side effects [6]. 35 

In clinical practice, glycerol has been used as an osmotic adjuvant for controlling 36 

intracranial pressure [7]. It has also been reported that glycerol inhibits in vitro proliferation 37 

in various cell types [8] and decreases the cerebral growth of neonatal rabbits [9]. In the 38 

liver, glycerol has a potent growth-inhibitory effect in vivo during regeneration after partial 39 

hepatectomy and in vitro in mitogen-induced hepatocyte cultures as well as in a human 40 

HCC cell line [10]. However, the mechanisms involved in the antiproliferative actions of 41 

glycerol have not been deeply explored. 42 

Hepatocellular carcinoma (HCC) is one of the most lethal tumors worldwide and its 43 

prognosis largely depends on tumor stage at the moment of diagnosis. Incidence of HCC 44 

has continuously increased over the last years and improved surveillance could be 45 

associated with identifiable high-risk patients, like those with chronic liver disease 46 
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originated from viral infections, high alcohol consumption or non-alcoholic steatohepatitis, 47 

among others [11]. In these patients, liver preneoplastic foci of altered hepatocytes emerge 48 

months or years before the diagnosis of HCC [12]. Similar preneoplastic lesions are found 49 

in rodents during early stages of liver cancer induced by chemicals [13].  50 

In the present study, we analyzed whether oral administration of glycerol during the early 51 

stage of rat liver carcinogenesis is capable of reducing preneoplastic foci development. We 52 

also attempt to elucidate the molecular mechanisms associated with this phenomenon. 53 

 54 

2 Materials and Methods 55 

 56 

2.1 Reagents and Chemicals 57 

Diethylnitrosamine (DEN), 2-acetylaminofluorene (2-AAF) and glycerol were obtained 58 

from Sigma Chemical Co. (St. Louis, MO, USA). Anti-pi class of rat glutathione S-59 

transferase (rGST P) was from Stressgen Bioreagents (Ann Arbor, MI, USA). Cy3 60 

fluorescent secondary antibody was purchased from Jackson ImmunoResearch 61 

Laboratories, Inc. (West Grove, PA, USA). Antibodies against proliferating cell nuclear 62 

antigen (PCNA), p53, p21, cyclin D1, cyclin E, cyclin A, cyclin B1, cdk1 (cyclin-63 

dependent kinase 1), cdk2, Bax, Bcl-2, Bad, PUMAα/β, cytochrome c, p-Akt (Ser473), and 64 

Akt were from Santa Cruz Biotechnology (Santa Cruz, CA, USA). Anti-p-JNK 1/2/3 65 

(Thr183/Tyr185), anti-JNK1/2/3 (against JNK 1 and 2/3 isoforms), anti-p-Erk1/2 66 

(Thr202/Tyr204) anti-Erk1/2 (against Erk 1 and 2 isoforms) antibodies were purchased 67 

from Cell Signaling Technology (Danvers, MA, USA). Pierce enhanced 68 

chemiluminescence (ECL) Western Blotting Substrate was from Thermo Fisher Scientific 69 
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(Rockford, IL, USA). All other chemicals were of the highest grade commercially 70 

available. 71 

 72 

2.2 Animals and treatment 73 

Experimental protocols were performed according to the NIH “Guide for the Care and Use 74 

of Laboratory Animals” (Publication no. 25-28, revised 1996) and approved by the local 75 

animal care and use committee (Permission 6060/234, FBioyF, UNR). Adult male Wistar 76 

rats were subjected to a 2-phase (initiation-promotion) model of hepatocarcinogenesis, as 77 

previously described [14]. All animals received 2 necrogenic doses of DEN (150 mg/Kg 78 

body weight, intraperitoneally) 2 weeks apart (initiation phase). The promotion stage began 79 

one week after the last injection of DEN; all rats received 2-AAF (20 mg/Kg body weight) 80 

by gavage 4 consecutive days per week during 3 weeks. Before the start of the initiation-81 

promotion treatment, animals were divided into two goups of six rats each: IP group, 82 

animals received the carcinogenic treatment plus a saline solution (glycerol vehicle); and 83 

IPGly group, they received the carcinogenic treatment plus 200 mg/Kg body weight 84 

glycerol administered by gavage once a week, 2 hs before DEN or 2-AAF treatment. A 85 

scheme of the experimental protocol is shown in Supplementary Figure 1. Animals were 86 

anesthetized with ketamin/ xylazine (100 and 3 mg/Kg body weight, respectively) and 87 

sacrificed by exsanguination at the end of the sixth week. Blood samples were collected 88 

and livers were removed and processed. 89 

 90 

2.3 Serum free glycerol and enzymes activities determination 91 
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Serum free glycerol was determined in serum samples using Free Glycerol Determination 92 

Kit (Sigma Chemical Co.). Alanine and aspartate aminotransferases (ALT and AST, 93 

respectively) and alkaline phosphatase (ALP) were determined spectrophotometrically in 94 

fresh serum by commercial kits (Wiener Lab, Rosario, Argentina). 95 

 96 

2.4 Immunofluorescence detection and quantitation of rGST P-positive preneoplastic 97 

foci 98 

Immunohistochemical detection of rGST P is the chosen method for identification and 99 

quantification of preneoplastic foci [15]. Immunofluorescent detection of rGST P-positive 100 

foci was performed as previously described [16]. Images were analyzed using ImageJ 101 

software (U. S. National Institutes of Health, Bethesda, MD, USA). The number of 102 

preneoplastic foci per liver and the percentage of liver occupied by foci were calculated 103 

according to the modified Saltykov’s method [17].  104 

 105 

2.5 PCNA detection and proliferative index determination 106 

Immunohistochemical staining of PCNA protein was performed following the method of 107 

Greenwell et al. [18]. Proliferative cells inside the foci and in the surrounding tissue were 108 

distinguished by analyzing consecutive section slides stained with anti-rGST P. The PCNA 109 

proliferative index was defined as the number of proliferative cells (in G1, S, G2 and M 110 

phases) per 100 hepatocytes counted in 10 high-power fields. Preneoplastic hepatocytes in 111 

each phase of the cell cycle were also determined by a blinded histologist, using specific 112 

PCNA staining patterns, as previously described [16, 19]. Data were expressed as 113 

percentage of preneoplastic cells in each stage of the cell cycle. 114 
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 115 

2.6 Western blot analysis 116 

Whole liver samples were homogenized in 300 mM sucrose with protease and phosphatase 117 

inhibitors. Cytosolic, mitochondrial and nuclear extracts were prepared as previously 118 

described [14, 16]. Equal amounts of protein were subjected to electrophoresis on 12% 119 

SDS-polyacrylamide gels and transferred onto polyvinyl difluoride membranes 120 

(PerkinElmer Life Sciences, Boston, MA, USA). Membranes were blocked, washed and 121 

incubated overnight at 4 °C with primary antibodies. Finally, membranes were incubated 122 

with peroxidase-conjugated secondary antibodies and bands were detected by the ECL 123 

detection system and quantified by densitometry using the Gel-Pro Analyzer software 124 

(Media Cybernetics, Silver Spring, MD, USA). Equal loading and protein transference 125 

were checked by Ponceau S staining of the membranes. 126 

 127 

2.7 Caspase-3 activity assay 128 

Caspase-3 activity was determined using EnzChek Caspase-3 Assay Kit #1 (Molecular 129 

Probes Inc, Eugene, OR, USA), according to the manufacturer’s suggestions.  130 

 131 

2.8 Determination of hepatic glycerol phosphate content 132 

Glycerol phosphate in liver homogenates was enzymatically measured as previously 133 

described [20], with slight modifications. First, glycerol phosphate was oxidized by 134 

glycerol-3-phosphate oxidase, to generate hydrogen peroxide and dihydroxyacetone 135 

phosphate; and second, peroxidase catalyzed the coupling of hydrogen peroxide with 4-136 
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aminophenazone and chlorophenol to produce a quinoneimine dye that can be measured at 137 

540 nm. Glycerol standard solution (Wiener Lab) was used as negative control. 138 

 139 

2.9 Lipid peroxidation assay 140 

Lipid peroxidation is considered as an indirect measure of reactive oxygen species (ROS) 141 

generation [21]. The amount of aldehydic products generated by lipid peroxidation in liver 142 

homogenates was quantified by the thiobarbituric acid reaction according to the method of 143 

Ohkawa et al. [22] and measured by high-performance liquid chromatography. 144 

 145 

2.10 Liver tissue antioxidant capacity analysis 146 

Reduced (GSH) and oxidized (GSSG) glutathione were determined in total liver 147 

homogenates according to the protocol described by Tietze [23], and GSH/GSSG ratio was 148 

calculated. Superoxide dismutase (SOD) gel activity assay was based on the method of 149 

Donahue et al. [24]. Bands quantification was made by densitometry using the Gel-Pro 150 

Analyzer software. Catalase (CAT) activity was determined by monitoring the rate of H2O2 151 

decomposition as a function of absorbance decrease at 240 nm [25]. 152 

 153 

2.11 Determination of protein concentration  154 

Protein concentration was determined by the Lowry method [26], using bovine serum 155 

albumin as a standard. 156 

 157 

2.12 Statistical analysis 158 
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Results were expressed as mean ± SEM. Significance in differences was tested by Student’s 159 

t-test. Differences were considered significant when the p value was < 0.05. 160 

 161 

3 Results 162 

 163 

3.1 Serum free glycerol levels and hepatic enzymes activities did not change after oral 164 

administration of glycerol 165 

Oral administration of glycerol had no effect on serum free glycerol levels measured at the 166 

end of the experimental protocol (IP: 0.55±0.06 g/L; IPGly: 0.54±0.04 g/L), as it is rapidly 167 

absorbed in the gastrointestinal tract and cleared from blood. 168 

On the other hand, serum markers of liver damage ALT, AST and ALP showed no 169 

statistical differences between groups (data not shown). 170 

 171 

3.2 Oral administration of glycerol affected the volume of preneoplastic foci 172 

Fig. 1a shows representative images from IP and IPGly groups. Oral administration of 200 173 

mg/Kg body weight glycerol did not induce significant changes in the number of liver foci. 174 

However, the percentage of liver occupied by foci significantly decreased in IPGly group as 175 

compared to IP animals (Fig. 1b).  176 

 177 

3.3 Proliferative status of liver foci was modified by glycerol treatment 178 

Representative images of PCNA staining from the experimental groups are shown in Fig. 179 

2a. Glycerol administration induced a significant decrease of the proliferative index inside 180 
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the foci. However, glycerol treatment did not affect the proliferative status of the tissue 181 

surrounding the preneoplastic foci (Fig. 2b). 182 

Furthermore, we analyzed the percentages of preneoplastic hepatocytes in each phase of the 183 

cell cycle (Fig. 2c). Glycerol administration induced a significant increase in the percentage 184 

of cells in G1 phase of the cell cycle along with a significant decrease in the percentage of 185 

cells in M phase.  186 

 187 

3.4 Glycerol affected the expression of cell cycle-related proteins 188 

Western blot studies revealed significant increases in the cell cycle-regulatory proteins p53 189 

and p21 in preneoplastic livers of animals treated with glycerol (Fig. 3a and b, 190 

respectively). In addition, protein levels of cyclin D1 (Fig. 3c) and cyclin-dependent kinase 191 

1 (cdk1, Fig. 3h) were significantly decreased in IPGly group. Glycerol administration had 192 

no effect on cyclins E, A and B neither on cdk2 (Fig. 3d, e, f and g). 193 

 194 

3.5 Glycerol administration induced programmed cell death in preneoplastic livers 195 

Oral administration of glycerol significantly enhanced caspase-3 activity (Fig. 4a), which 196 

indicated that programmed cell death was occurring. Also, pro-apoptotic Bax levels were 197 

increased whereas anti-apoptotic Bcl-2 levels were decreased in liver mitochondrial 198 

fractions of IPGly group (Fig. 4b). Accordingly, Bax/Bcl-2 ratio was significantly 199 

augmented in animals that received glycerol (Fig. 4c). In addition, mitochondrial levels of 200 

pro-apoptotic proteins Bad and PUMA were increased in IPGly animals (Fig. 4d and e). 201 

Finally, the release of cytochrome c into the cytosol was increased in IPGly group (Fig. 4f).  202 

 203 
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3.6 Hepatic levels of glycerol phosphate increased after glycerol treatment 204 

The first stage in hepatic glycerol metabolism is the conversion into glycerol phosphate by 205 

glycerol kinase [27]. Fig. 5 shows that hepatic glycerol phosphate levels were increased in 206 

IP animals upon oral administration of glycerol. 207 

 208 

3.7 Lipid peroxidation and antioxidant capacity were modified by glycerol 209 

administration 210 

It has been reported that mitochondrial metabolism of glycerol phosphate generates ROS 211 

intermediates [28, 29]. Therefore, we analyzed the amount of thiobarbituric acid reactive 212 

substances (TBARS) as a reflection of the hepatic oxidative status. As shown in Fig. 6a, 213 

glycerol administration produced a significant increase in TBARS levels compared to IP 214 

group. Also, no significant changes in GSH/GSSG ratio were observed between treatments 215 

(Fig. 6b). On the other hand, Cu/Zn SOD activity was significantly increased (Fig. 6c) and 216 

CAT activity was significantly decreased (Fig. 6d) in IPGly animals. As SOD catalyzes 217 

superoxide radical dismutation into O2 and H2O2 and CAT catalyzes the decomposition of 218 

H2O2 to O2 and H2O, it is likely that H2O2 is mainly produced during the treatment of IP 219 

animals with oral glycerol. 220 

 221 

3.8 Glycerol affected JNK1/2/3 and Erk2 activation in preneoplastic livers 222 

Previous studies have shown that pyruvate metabolism produces mitochondrial oxidants 223 

release which mediate c-Jun N-terminal kinase (JNK) activation [30]. Since glycerol shares 224 

structural and metabolic similarities with pyruvate, we analyzed if oxidative stress 225 

generation by glycerol metabolism in IPGly animals was able to activate JNK signaling. 226 



13 

 

Additionally, we studied extracellular-signal-regulated kinase (Erk) and protein kinase Akt 227 

activation, which are critical kinases involved in cell proliferation and apoptosis usually 228 

deregulated in HCC [31]. The levels of total and activated (phosphorylated) kinases in liver 229 

homogenates were measured by western blot and the phosphorylated/total kinase ratios 230 

were calculated. As seen in Fig. 7a, there was a significant increase in the p-JNK/JNK ratio 231 

(for the three isoforms) in glycerol-treated animals. In addition, there was a significant 232 

diminution in the p-Erk2/Erk2 ratio, with no changes in the activation of Erk1 isoform in 233 

IPGly group (Fig. 7b). Finally, p-Akt/Akt ratio showed no differences between the 234 

experimental groups (Fig. 7c).  235 

 236 

4 Discussion 237 

In the present study we tested the potential antiproliferative effect of oral glycerol 238 

supplementation in early liver carcinogenesis and also explored the mechanisms by which 239 

glycerol exerts such effect.  240 

The selected dose was based in a previous study in rats which evaluated the effect of oral 241 

pure glycerol as a food supplement [4]. We observed that serum markers of liver function 242 

did not change in IP animals treated with 200 mg/Kb body weight glycerol, in accordance 243 

with the unaffected metabolic parameters previously reported. Furthermore, we used an 244 

intermittent regimen of administration, as previously reported for quercetin in our 245 

experimental model of liver preneoplasia [16]. 246 

The analysis of number and size of proliferative lesions clearly showed that glycerol 247 

administration induces a reduction in the development of liver foci, without affecting the 248 

number of initiated cells that clonally expand to generate preneoplastic lesions, but 249 
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reducing the growth rate of these clones instead. Accordingly, the study of the proliferative 250 

status of liver foci indicates that a lower number of hepatocytes are entering into the cell 251 

cycle in glycerol-treated rats. Our results show that glycerol action seems to be specific for 252 

preneoplastic hepatocytes. Experiments in control (non IP) rats showed that glycerol 253 

administration did not affect serum liver damage markers, it kept normal hepatic 254 

architecture and it did not affect PCNA staining (data not shown), showing that glycerol 255 

exerts its actions in hepatocytes primed to proliferate rather than in quiescent liver cells, in 256 

line with previous findings on regenerating rat livers [10]. 257 

Induction of p53 results in increased p21 protein levels, a critical regulator of cell cycle 258 

arrest [32]. Although we did not deepen the study of the mechanisms involved in p53 and 259 

p21 activation, the increased expression of these proteins in liver tissue of IPGly animals 260 

support both the antiproliferative and the proapoptotic phenomena observed in this 261 

experimental group. The decrease in cyclin D1 protein levels in glycerol-treated rats is in 262 

line with the accumulation of preneoplastic cells in G1 phase. We have also observed that 263 

glycerol produces a clear decrease in mitosis, most likely induced by the decrease of cdk1 264 

protein, a fact that does not favor cyclin B/cdk1 complex formation necessary for the cell to 265 

enter into the M phase of cell cycle. 266 

Dysregulation of the balance between proliferation and apoptosis defines a pro-tumorigenic 267 

basis in hepatocarcinogenesis [33]. Consequently, targeting one or both of these features 268 

may result in a reduced tumor development. In this context, increased caspase-3 activity in 269 

IPGly animals indicates that apoptosis is enhanced after treatment. Furthermore, glycerol 270 

increases mitochondrial Bax/Bcl-2 ratio and Bad and PUMA pro-apoptotic proteins 271 

expression, together with the release of cytochrome c into the cytosol [34]. Collectively, 272 
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these results support the notion that oral glycerol administration induces apoptosis in 273 

preneoplastic livers and that the mitochondria is implicated in this phenomenon. Although 274 

apoptosis may be initiated in any phase of the cell cycle, most cells undergo apoptosis 275 

primarily in the G1 phase, indicating a direct connection between apoptosis and 276 

proliferation. This relationship is explained by the presence of many cell cycle 277 

regulators/apoptosis inducers such as p53, operating at the G1/S checkpoint [35]. 278 

Consequently, it can be assumed that glycerol induces a cell cycle blockage in order to 279 

favor the apoptotic process which would be its ultimate effect to reduce the foci 280 

development. 281 

After oral ingestion, glycerol is mainly taken up by the liver and converted into glycerol 282 

phosphate by glycerol kinase. Once phosphorylated, it is mostly oxidized by glycerol-3-283 

phosphate dehydrogenase to dihydroxyacetone phosphate [27]. It has been demonstrated 284 

that oxidation of glycerol phosphate induces mitochondrial ROS formation, both in normal 285 

and in pathophysiological conditions. One of the main ROS generated during glycerol 286 

phosphate metabolism is hydrogen peroxide, as demonstrated in isolated mitochondria from 287 

different tissues, including hepatic tissue [29, 36]. The study of lipid peroxidation and 288 

antioxidant enzymes activities showed that glycerol phosphate metabolism induces 289 

production of ROS in our experimental model. Although hepatic levels of hydrogen 290 

peroxide were not directly measured, the profile of changes in SOD and CAT activities 291 

between the experimental groups supports the hypothesis that this molecule is primarily 292 

being produced during glycerol treatment. 293 

It has been established that metabolic hydrogen peroxide functions as a central hub in redox 294 

signaling in major processes such as proliferation and cell death [37]. One link between 295 
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oxidative stress signaling and proliferation/cell death processes is p53 induction by ROS. 296 

Another possible connection is ROS-induced modulation of kinases such as JNK, Erk and 297 

Akt. JNK signaling is activated in liver tissue of IPGly animals, supporting the well-298 

established role of ROS-induced JNK signaling in apoptotic cell death [38]. Despite we did 299 

not observe any changes in activated Erk1 and Akt levels, Erk2 signaling is inhibited in 300 

glycerol-treated rats. In line with this finding, it has been reported that glycerol has a 301 

stimulating effect on the phosphatase activity that specifically induces Erk2 inactivation 302 

[39]. Moreover, Erk activation is also required for G1/S transition via enhanced cyclin D1 303 

synthesis [40]. 304 

A recent study of energy metabolism in HCC shows a depression of glycerol phosphate and 305 

other energy metabolites concentrations within the tumor [41]. These data indicate that 306 

tumor metabolism turns from mitochondrial oxidation to aerobic glycolysis. Furthermore, 307 

based in the present findings, we hypothesize that tumoral cells attempt to avoid glycerol 308 

phosphate accumulation as a strategy to evade the effects of this metabolite in their growth 309 

rate. 310 

 311 

5 Conclusion 312 

Our results provide original data concerning the preventive actions of glycerol during the 313 

early development of liver cancer. Our postulated mechanism is schematized in Fig. 8. 314 

Briefly, glycerol is taken up by preneoplastic hepatocytes and converted into glycerol 315 

phosphate. Then, glycerol phosphate undergoes oxidative metabolism inducing 316 

mitochondrial oxidative stress generation. ROS act as intracellular messengers, producing 317 

p53 activation and changes in JNK and Erk signaling. These phenomena induce cell cycle 318 
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arrest and mitochondrial apoptotic cell death that finally conduct to a reduction of liver 319 

lesions. Additional experiments using knockdown and knockout techniques might be useful 320 

to confirm the proposed mechanism of action of glycerol in the initial development of liver 321 

lesions.  322 

This study is the first one to show a foci volume decreasing role of glycerol in the liver of 323 

rats with hepatic preneoplasia. It is interesting to note that despite oral glycerol 324 

consumption is innocuous and it is considered an “almost inert” molecule; glycerol exerts 325 

its effects in a ROS-dependent manner, leading to cell cycle arrest and increased cell death. 326 

The effect of glycerol administration on advanced stages of hepatic carcinogenesis is a 327 

mandatory step in the study of glycerol anti-proliferative effects. The results presented in 328 

this paper pave the way for a better understanding of natural and risk-free molecules that 329 

applied in patients with liver chronic diseases, have the potential to decrease morbidity and 330 

improve the quality of life for these patients. 331 
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Figure legends 

Fig. 1 Effect of oral glycerol administration on number and volume of liver preneoplastic 

foci. (a) Representative images of rGST P-positive preneoplastic foci obtained by confocal 

microscopy (objective: 10X). (b) Changes in number of foci per liver and volume 

percentage of liver occupied by preneoplastic lesions are represented for IP and IPGly 

groups. IP: rats with liver preneoplasia; IPGly: IP rats treated with 200 mg/Kg body weight 

glycerol. Data are expressed as mean ± SEM; n = 6. *p< 0.05 vs. IP 

 

Fig. 2 Effect of oral administration of glycerol on the proliferative status of liver foci. (a) 

Representative images of proliferating cell nuclear antigen (PCNA)-positive cells obtained 

by optical microscopy (objective: 20X). (b) Changes in the proliferative index in the foci 

and the surrounding tissue. (c) Determination of the percentage of preneoplastic 

hepatocytes in each phase of the cell cycle. IP: rats with liver preneoplasia; IPGly: IP rats 

treated with 200 mg/Kg body weight glycerol. Data are expressed as mean ± SEM; n = 6. 

*p< 0.05 vs. IP 

 

Fig. 3 Effect of oral administration of glycerol on the expression of cell cycle-related 

proteins. Western blot analysis of: (a) p53, (b) p21, (c) cyclin D1, (d) cyclin E, (e) cyclin 

A, (f) cyclin B1, (g) cyclin-dependent kinase 2 (cdk2), and (h) cdk1. β-actin was detected 

as loading control. IP: rats with liver preneoplasia; IPGly: IP rats treated with 200 mg/Kg 

body weight glycerol. Densitometric analysis was performed and data are expressed as 

percentage of IP group (arbitrarily considered 100%) and are mean ± SEM; n =6 (a, b, c, g 

and h) or 4 (e and f). *p< 0.05 vs. IP 
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Fig. 4 Effect of oral administration of glycerol on apoptotic cell death. (a) Caspase-3 

activity was determined in cytosolic fractions and expressed as percentages, being IP group 

arbitrarily considered as 100%. (b) Mitochondrial levels of pro-apoptotic Bax and anti-

apoptotic Bcl-2 proteins were analysed by western blot. (c) After densitometric 

quantitation, Bax/Bcl-2 ratio was calculated, and results were expressed as percentage of IP 

group (arbitrarily considered as 100%). Mitochondrial levels of pro-apoptotic (d) Bad and 

(e) PUMA proteins were also evaluated by western blot. (f) Release of cytochrome c was 

determined by western blot in cytosolic extracts from each experimental group. IP: rats 

with liver preneoplasia; IPGly: IP rats treated with 200 mg/Kg body weight glycerol. β-

actin and prohibitin were probed as loading control in cytosolic and mitochondrial extracts, 

respectively. Data are mean ± SEM; n= 6 (a, b, c and f) or 4 (d and e). *p< 0.05 vs. IP 

 

Fig. 5 Analysis of glycerol phosphate hepatic levels. Enzymatic detection of glycerol 

phosphate in liver homogenates was performed and corrected by protein concentration. IP: 

rats with liver preneoplasia; IPGly: IP rats treated with 200 mg/Kg body weight glycerol. 

Results are expressed as percentage of IP group (arbitrarily considered as 100%) and are 

mean ± SEM; n = 6. *p< 0.05 vs. IP 

 

Fig. 6 Analysis of lipid peroxidation and liver antioxidant capacity. (a) Lipid peroxidation 

was determined by quantification of the amount of thiobarbituric acid reactive substances 

(TBARS). (b) Determination of reduced glutathione (GSH)/oxidized glutathione (GSSG) 

ratio in liver homogenates from the experimental groups. Analysis of (c) Cu/Zn superoxide 
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dismutase (SOD) and (d) catalase (CAT) activities in total liver homogenates. IP: rats with 

liver preneoplasia; IPGly: IP rats treated with 200 mg/Kg body weight glycerol. Data are 

expressed as percentage of IP group and are mean ± SEM; n = 6. *p< 0.05 vs. IP 

 

Fig. 7 Effect of glycerol treatment on activation of JNK, Erk and Akt signalling. Activated 

(phosphorylated) hepatic protein levels of (a) JNK1/2/3, (b) Erk1/2 and (c) Akt were 

determined by western blot analysis. Total levels of the kinases were also measured and 

phosphorylated/total kinase ratios were calculated. . IP: rats with liver preneoplasia; IPGly: 

IP rats treated with 200 mg/Kg body weight glycerol. Data are expressed as percentage of 

IP group and are mean ± SEM; n= 4 (a) or 6 (b and c). *p< 0.05 vs. IP 

 

Fig. 8 Scheme showing the postulated mechanisms involved in the preventive action of 

glycerol in the early development of liver cancer. Inside the hepatocytes, glycerol is 

converted into glycerol phosphate. Then, glycerol phosphate undergoes oxidative 

metabolism and generates oxidative stress of mitochondrial origin. Reactive oxygen species 

(ROS) act as intracellular messengers, producing p53 activation and changes in JNK and 

Erk signaling activation. These phenomena induce cell cycle arrest and mitochondrial 

apoptotic cell death that finally conduct to a reduction of liver lesions. 
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