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We have developed a simple procedure for the preparation of chiral 1,3-aminoalcohols using the 

biomass derivative levoglucosenone, as the chiral starting material. 1,3-aminoalcohols, bearing 

primary and tertiary amino groups, were tested as chiral catalysts in the asymmetric addition of 

diethyl zinc to benzaldehyde. 
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Introduction 

Aminoalcohols are important building blocks represented in natural products and pharmaceuticals 

and are useful synthons for organic syntheses. In particular, they have been extensively used in 

asymmetric synthesis, both as chiral ligands and auxiliaries.1,2 While less frequently employed than 

1,2-aminoalcohols, 1,3-aminoalcohols have also contributed significantly to the development of 

asymmetric synthesis. There are some examples of their uses in diverse chemical transformations 

such as Diels–Alder and other cycloaddition reaction, sigmatropic rearrangement, aldolic reactions, 

ring opening reactions, transition-metal-catalyzed reactions, etc.3 However, the catalytic 

asymmetric carbon–carbon bond formation is one of the most active research areas in which 

aminoalcohols have been tested as catalysts.4 Despite the variety of chiral ligands that have been 

synthesized and tested, the development of cost-effective catalysts that could exhibit high reactivity 

and enantioselectivity still remains an active research topic. In this context, we focused our 

attention on the development of new tools for asymmetric synthesis using biomass derivatives as 

chiral starting material. We have already synthesized new and efficient chiral auxiliares and 

organocatalysts starting from levoglucosenone (1) (1,6-anhydro-3,4-dideoxy-b-Dglycero-hex-3-

enopyranos-2-ulose) which is the major product of the pyrolysis of acid-pretreated waste paper.5,6 

This bicyclic enone has also been used as a chiral synthon in the synthesis of a wide variety of 

compounds.7 In order to explore new applications for levoglucosenone, we wish to report our recent 

progress on the use of this easily available member of the carbohydrate pool for the development 

of new chiral 1,3-aminoalcohols (Scheme 1) and their applications in the enantioselective diethylzinc 

addition to benzaldehyde. 

 



 

Results and discussion 

The design of the new chiral 1,3-aminoalcohols derived from levoglucosenone was envisaged by 

functionalizing the double bond of 1, using a general procedure which involves a Diels– Alder 

reaction between 1 and a suitable 9-anthracene derivative 2 to afford the cycloadduct 3, followed 

by the reduction of the carbonyl group to afford the diastereomeric alcohols 4 and 5 Scheme 2. The 

choice of 9-aminoanthracene as diene relies on the possibility to prepare the corresponding 

aminoalcohols with different substitution at the amino group. In this way, the design of the new 

 

 

 

chiral 1,3-aminoalchools was conceived in order to determine the relationship between the 

absolute configuration of the carbinolic center and the substitution of the amino group with the 

inductive capacity. 

Using the procedures described in our previous reports,6,7 we have developed a convenient access 

to a large amount of levoglu-cosenone which was employed as the chiral starting material for the 

cycloaddition reaction with 9-aminoanthracene. The synthesis of 2 was made in two steps starting 



from anthracene by a nitration reaction8 with HNO3 and HCl followed by the reduction of the nitro 

group by hydrogenation reaction catalyzed by Pd/C,9 affording 2 with 94% overall yield. This 

compound was used as a diene in the Diels–Alder reaction with 1 employing a catalytic amount of 

anhydrous FeCl3. The reaction might be expected to yield up to four isomeric products since the 

aromatic substrate can add from the bottom or the top face of the dienophile, besides the possibility 

of the formation of the ortho and meta regioisomers. However, after column chromatography only 

the ortho cycloadduct 3 was isolated as a single diastereomer in 91% yield. This selectivity could be 

explained due to the exclusively attack of the diene through the ɑ face of the pyranose ring because 

of the steric hindrance produced by the 1,6-anhydro bridge.10 It was already observed that the ortho 

regioisomer is generally preferred in cycloaddition reactions of 9-substituted anthracenes with 

dienophiles.11 The stereochemical assignments of the new compound were made possible by the 

use of 1H NMR spin decoupling and NOE data. The NOE observed between H-4 and H-6 indicates 

that the diene approached from the ɑ-face of the dienophile, whereas the NOE between H-4a and 

H-5 reveals the formation of the ortho adduct.  

Once the synthesis of cycloadduct 3 was achieved in a straightforward and efficient manner, we 

proceeded to the generation of the desired 1,3-aminoalcohols 4 and 5 by reduction of the carbonyl 

functionality of 3. In order to provide a methodology to synthesize selectively each epimeric 1,3-

aminoalcohol, we studied the reaction employing different reducing agents and experimental 

conditions. The results are summarized in Table 1.  

The diastereoselective conversion of 3 to the corresponding alcohol derivatives relies mainly on the 

competitive steric encumbrance exerted by the 1,6-anhydro bridge above the plane of the 

pyranoside ring and the aromatic rings below it. A simple reduction of the ketone 3 with NaBH4 

employing CH2Cl2/MeOH (50/ 50) as the solvent mixture, led to the formation of two 

diastereomeric alcohols 4 and 5. Separation of these products was easily performed by flash column 

chromatography affording 4 and 5 in a 60/40 ratio (Table 1, entry 1). The most significant data in 

the 1H NMR spectrum of the main product 4 are the signals assigned to the anomeric proton that 

appear at 5.05 ppm as a doublet, with a coupling constant of 3.2 Hz, and the carbinolic signal H-2 

that appears at 3.16 ppm. The second isomer proved to be the epimeric alcohol 5 according to the 

spectroscopic evidences. The 1H NMR spectrum of 5 showed a signal at 5.03 ppm as a singlet for the 

anomeric proton, suggesting that the dihedral angle between H-1 and H-2 is close to 90, and a 

doublet at 4.01 ppm that corresponds to the carbinolic proton H-2. It is important to note that the 

carbinolic signal of 4 was significantly shifted upfield (3.16 ppm) compared to the equivalent proton 

in 5 (4.01 ppm). This protecting effect suggests that in the epimer 4 the H-2 is probably affected by 

the anisotropy of the aromatic system. The NOE observed between H-2 and the aromatic proton 

suggested the proximity of these nuclei through the space verifying without ambiguity the S 

configuration of C-2 in compound 4. The preferred formation of the major epimer 4 can be justified 

on the basis of coordination of the boron atom to the nonbonding electron pair of the nitrogen 

atom, which would facilitate the hydride attack by ɑ face of the pyranoside ring. For this reason, the 

use of a less coordinating solvent mixture with higher percentage of CH2Cl2 (entries 2–6), promoted 

the increases ratio 4–5. In contrast, when the reducing agent employed was bulkier and more 

selective as DIBAL-H or less coordinating as LiAlH4 the attack of the hydride occurs preferably from 

the β face giving the corresponding epimer 5 as sole or main product (entries 7–8). These results 



are in good agreement with our previous reports which demonstrated that the hydride attack takes 

place through the less crowded face of the carbonyl group.5e,10  

We next studied the synthesis of chiral 1,3-aminoalcohols with different substitution at the amino 

groups, Scheme 3. Our objective was to determine if the amino substitution could exert any 

influence on the enantioselective capacity of these chiral ligands, as it was reported for other 

catalysts.12,13 To achieve this goal, we decided to carry out a controlled alkylation of the amino 

functionality. The preparation of the secondary amino derivative was performed by a methylation 

reaction of the amine 4 with methyl iodide and NEt3. All attempts produced the desired product in 

very low yield and could not be properly purified to be employed as a chiral inductor. However, 

treatment of either aminoalcohols 4 and 5 with K2CO3 and MeI in acetone enables us to synthesize 

the 1,3-aminoalcohols with tertiary amino group 6 and 7 in very good yields. There are precedents 

in the literature which demonstrates that aminoalcohols with piperidine as amino group produce 

better enantioselectivities in the asymmetric addition of dialkylzinc to aldehydes.12,13 For this 

reason, 4 was treated with 1,5-diiodopenthane and K2CO3 in refluxing acetonitrile. The reaction 

afforded the cyclic amino derivative 8 with a piperidine like structure.  

 

 

 



 

 

 

 

Table 2  

Study of the ZnEt2 a addition to benzaldehyde catalyzed by 1,3-aminoalcohols 

 

 

c Main enantiomer of 1-phenyl-1-propanol assigned by the literature data15 and confirmed by polarimetry 

through [a]D measurements.  

a 1,1 M in hexane, 2 equiv regarding to benzaldehyde.  



b Determined by HPLC with Chiralcel OD-H column. 

Once the syntheses of inductors 4–8 were achieved in a straightforward manner, they were 

evaluated as chiral ligands in the enantioselective addition of diethylzinc to benzaldehyde. The 

reactions were performed using standard conditions with 2 equiv of ZnEt2 in the presence of the 

chiral ligand,14 Table 2. 

The enantioselective diethylzinc addition to benzaldehyde catalyzed by the 1,3-amonialcohols 4–8 

produced 1-phenyl-1-propanol. It has been reported that the outcome of this enantioselective 

reaction depends upon the aldehyde, dialkylzinc, and the catalyst ratio, which strongly affects the 

reactivity and selectivity. For this reason, we started our study using the 1,3-aminoalcohol 4. We 

could observe that the increment of the amount catalyst from 5 to 20 mol % (entries 1–3) increased 

the yield (from 40% to 94%) and enantioselectivity (from 32% to 54%). When the amount of 4 rose 

to 30 mol % the ee fallen to 50%. We then evaluated the epimeric 1,3-aminoalcohol 5, employing 

the amount of catalyst that produced the best results with 4. It was found that the best 

enantioselectivity was obtained with the use of 30 mol % of catalyst producing a 74% of ee. Next, 

we turned our attention to evaluate the effect of the substitution at the amino group. For this 

reason, we evaluated aminoalcohols 6–7 with tertiary amino group, however, the induction 

capacities observed were between good to low using 10–20 mol % of catalysts. The evaluation of 

catalyst 8 with a cyclic amino group related to the most selective 1,3-aminoalcohol 5, produced high 

yield of product with poor enantioselectivity. Comparison of the inductive capacity between all 

chiral ligands evaluated demonstrates that the most efficient one was 5, having a primary amino 

group and R configuration at the carbinolic center. Considering structurally related 1,2-

aminoalcohols previously reported in our group,12 it is possible to determine that the 1,3-

aminoalcohols are more enantioselective in the ZnEt2 addition to benzaldehyde. One salient feature 

is that for 1,2-aminoalcohols the best selectivities are observed with tertiary amino groups, 

meanwhile the most efficient 1,3-aminoalcohols are the ones with the primary amino group. 

In summary, this is the first report of the preparation of 1,3-aminoalcohols with primary and tertiary 

amino groups derived from levoglucosenone and their application in the enantioselective 

diethylzinc in addition to benzaldehyde. The syntheses of the aminoalcohols were simple and 

effective, allowing to obtain the desired compounds in two or three steps from levoglucosenone. 

The different substitution of amino groups present in this new family of aminoalcohols, show the 

adequate functionalization for further transformation into other chiral derivatives. The level of 

induction obtained, in addition to the fact that the starting material is easily obtained from biomass, 

makes this system an excellent model to be exploited in other asymmetric reactions and a starting 

point for the development of new chiral catalysts or organocatalysts.  
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