ESTUDIO DESCRIPTIVO DE POLIMORFISMOS DE ENZIMAS ANTIOXIDANTES EN CHAGAS

Gerrard G¹; Lioi S¹; Ceruti MJ¹; Diviani R¹; Caffaratti, J¹; Beloscar J², D'Arrigo M¹.

- 1. Área Química Analítica Clínica. Facultad de Ciencias Bioquímicas y Farmacéuticas. UNR Rosario, Argentina.
- 2. Carrera de Cardiología. Facultad de Ciencias Médicas. UNR. Rosario, Argentina. mdarrigo@fbioyf.unr.edu.ar

INTRODUCCIÓN

El hecho de que sólo una parte de la población que vive en zonas endémicas de Enfermedad de Chagas (EC) se infecta y que un tercio de las personas infectadas crónicamente desarrollan síntomas, remarcaría la importancia de factores genéticos en la susceptibilidad y desarrollo de la Miocardiopatía Chagásica Crónica (MCC). Procesos de inflamación crónica inducirían estrés oxidativo y lipoperoxidación. Pacientes que cursan la forma crónica de EC, presentan altos porcentajes de inflamación del miocardio con liberación de citoquinas que inducirían una producción de especies reactivas del oxígeno y el nitrógeno (ROS/RNS) mayor que lo normal. La producción de ROS/RNS podría ser uno de los mecanismos efectores claves para el control de infecciones de Trypanosoma cruzi in vivo.

OBJETIVO

Nos propusimos realizar un estudio descriptivo de las frecuencias genéticas (FG) de polimorfismos de superóxido dismutasa (SOD-Mn Ala9Val) y de catalasa (CAT C²⁷²T), en pacientes chagásicos con cardiopatía chagásica (MCC n:25), sin cardiopatía chagásica (ECsinMCC n:20) y cardiopatía no chagásica (CnoC n:25), comparados con controles sanos (C n:55).

MATERIALES Y MÉTODOS

Se trabajo con sangre con EDTA, la extracción de DNA fue realizada con DNA Purification Kit Wizard Genomic (Promega, USA), y la caracterización molecular y genotipificación de los polimorfismos por PCR-RFLP.

RESULTADOS

FG (IC 95 %)		С	ECsinMCC	MCC	CnoC
CAT	CC	0.64 (0.45-0.82)	0.84 (0.61-1.04)	0.70 (0.51-0.98)	0.64 (0.38-0.77)
	СТ	0.36 (0.17-0.54)	0.16 (0.00-0.38)	0.30 (0.12-0.48)	0.36 (0.22-0.51)
SOD	Ala Ala	0.57 (0.34-0.73)	0.36 (0.08-0.63)	0.28 (0.00-0.63)	0.62 (0.25-1.02)
	Ala Val	0.33 (0.14-0.51)	0.46 (0.17-0.74)	0.51 (0.18-0.79)	0.30 (0.08-0.38)
	Val Val	0.10 (0.00-0.26)	0.18 (0.00-0.39)	0.21 (0.00-0.37)	0.08 (0.00-0.10)

<u>Tabla</u>. Frecuencia génica de polimorfismos de CAT y SOD en C, ECsinMCC, MCC y CnoC.

Para comparar las FG se realizó el ensayo de hipótesis de una proporción bajo teoría normal, del cual se evidencia que existen diferencias significativas entre MCC y los demás grupos estudiados para SOD.

CONCLUSIONES

La comprensión de los eventos moleculares involucrados puede contribuir con el desarrollo de nuevas estrategias terapéuticas que resulten en el control del parásito y de la inflamación que lleva a la MCC. Se sugiere que las diferencias individuales en la producción de biomarcadores de estrés oxidativo y de inflamación podrían ser responsables de la variación de la respuesta entre los individuos. Estas diferencias podrían ser el resultado de los polimorfismos presentes.