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Abstract 14 

The aim of this work was to quantify five commonly used pesticides 15 

(propoxur, carbaryl, carbendazim, thiabendazole and fuberidazole) in real samples 16 

as: tomato, orange juice, grapefruit juice, lemon and tangerine. The method used 17 

for the determination of these analytes in the complex matrices was high-18 

performance liquid chromatography with diode array detection. In order to work 19 

under isocratic conditions and to complete each run in less than 10 min, the 20 

analysis was carried out applying multivariate curve resolution coupled to 21 

alternating least-squares (MCR–ALS). The flexibility of this applied multivariate 22 

model allowed the prediction of the concentrations of the five analytes in complex 23 

samples including strongly coeluting analytes, elution time shifts, band shape 24 

changes and presence of uncalibrated interferents. The obtained limits of detection 25 

(in g L–1) using the proposed methodology were 2.3 (carbendazim), 0.90 26 

(thiabendazole), 12 (propoxur), 0.46 (fuberidazole) and 0.32 (carbaryl).  27 

 28 
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propoxur (PRO), carbaryl (CBL), carbendazim (MBC), thiabendazole (TBZ), 36 

fuberidazole (FBZ) 37 

 38 

1. Introduction 39 

Although the use of pesticides provides unquestionable benefits in providing 40 

a plentiful, low-cost supply of high-quality fruits and vegetables, their incorrect 41 

application may leave harmful residues, which involve possible health risk [1]. The 42 

concentration of pesticides is regulated in many samples such as drinking waters, 43 

vegetables, juices, etc., by the European Commission [2] and the Food and Drug 44 

Administration [3], among other agencies. Traditionally, the instrumental 45 

techniques employed to determine these compounds involve fluorescence, gas or 46 

liquid chromatography [4-8]. Specifically, the determination of benzimidazolic 47 

pesticides (carbendazim, thiabendazole and fuberidazole) and/or carbamates 48 

(carbaryl, propoxur and carbendazim) in fruits and vegetables have been carried 49 

out by various approaches, such as supramolecular solvent-based microextraction 50 

followed by high-performance liquid chromatography (HPLC) with fluorescence 51 

detection [9], gas chromatography coupled to mass spectrometry and selected ion 52 

monitoring [10], enzymatic immunoassay using antibodies [11-13] or 53 

electrochemical methods [14, 15].   54 

The analysis of mixtures of pesticides using methods based on HPLC 55 

sometimes results in complex separations and overlapped peaks [16, 17]. 56 

Nevertheless, complex multicomponent mixtures can in many cases be 57 

qualitatively and quantitatively resolved by means of chemometrics. Depending on 58 

their nature, data can be arranged in a two-way structure (a table or a matrix), as in 59 
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the case of collecting the absorbance spectra for many samples, or in a three-way 60 

structure, e.g. in HPLC with diode array detection (DAD), where spectra are 61 

recorded at several elution times for each sample. Such data arrangements in 62 

three- or higher way arrays can be handled using multi-way methods of analysis 63 

[18, 19].  64 

Collection of multi-dimensional chromatographic information, and data 65 

processing by advanced chemometric algorithms constitute a fruitful combination 66 

of techniques, recently applied to diverse research areas [20-22]. Chemometrics is 67 

required whenever perfect separation of the various sample components cannot be 68 

achieved by the employed chromatographic system, leading to overlapping peaks 69 

in the elution time mode. In these cases, selectivity may be mathematically 70 

restored by applying multivariate data analysis [23]. In particular, the so-called 71 

second-order advantage can be achieved, a property which is inherent to matrix 72 

instrumental data, and implies that analytes can be quantified in samples 73 

containing potential interferences [21]. Signals arising from coeluting analytes or 74 

foreign components can be modeled by powerful second-order multivariate 75 

algorithms.  76 

The combination of chemometrics to HPLC presents additional advantages 77 

in relation to traditional methods: since chemometrics allows resolving coeluted 78 

peaks, it is possible to reduce the duration of the chromatographic run, allowing not 79 

only processing more samples but also reducing the solvent consumption, saving 80 

time and money. Moreover, several authors report that gradient of solvents was 81 

required to achieve resolution of the analytes [24-26]: this requirement may be 82 
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avoided using isocratic conditions and resolving the peak by applying 83 

chemometrics.  84 

In liquid chromatographic runs, elution time shifts and band shape changes 85 

usually occur from sample to sample: in these cases, a useful alternative is to 86 

analyze the data with flexible algorithms, which allow a given component to present 87 

different time profiles in different samples, such as parallel factor analysis 2 88 

(PARAFAC2) or multivariate curve resolution coupled to alternating least-squares 89 

(MCR-ALS) [27]. Recent work from our laboratory indicated better performance 90 

with MCR–ALS in the case of multi-analyte quantification in the presence of high 91 

overlapping of elution profiles and uncalibrated interferences, mainly because of 92 

the possibility of building a more constrained model in MCR–ALS in comparison 93 

with PARAFAC2 [22].  94 

In the present report, we selected MCR–ALS as the algorithm of choice for 95 

processing HPLC-DAD data, and discuss its behavior towards the quantification of 96 

the following five pesticides in fruit and vegetable samples: propoxur (PRO), 97 

carbaryl (CBL), carbendazim (MBC), thiabendazole (TBZ) and fuberidazole (FBZ) 98 

(Fig. 1). The presence of benzimidazoles, carbamates and their degradation 99 

products in waters or food products is potentially harmful for humans due to their 100 

proven toxicity. This is the cause of the continued interest in the development of 101 

analytical methods for monitoring these families of compounds. Previous 102 

chromatographic analysis of the presently studied compounds required up to 35 103 

min [28, 29]. The aim of this work is to quantify these analytes in complex matrices 104 

under HPLC isocratic conditions and in less than 10 min.  105 
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 106 

Figure 1 107 

2. Theory 108 

The bilinear model assumed by MCR methods is analogous to the 109 

generalized Lambert-Beer’s law, where the individual responses of each 110 

component are additive. In matrix form, this bilinear model is expressed as: 111 

 D = C ST + E           (1)112 

where D (size JK) is the matrix of experimental data (J is the number of elution 113 

time data points and K is the number of absorption wavelengths), C (size JN) is 114 

the matrix whose columns contain the concentration profiles of the N components 115 

present in the samples, ST (size NK) is the matrix whose rows contain the 116 
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component spectra and E (size JK) is a matrix collecting the experimental error 117 

and the variance not explained by the bilinear model of equation (1).  118 

 The first step in MCR-ALS studies is to obtain a rough estimation of the 119 

number of components, which can be simply performed by visual inspection of 120 

singular values or principal component analysis (PCA) [30, 31].  121 

The resolution is accomplished using an iterative ALS procedure, initialized 122 

using an initial estimation of the spectral or concentration profiles for each 123 

intervening species. Different methods are used for this purpose, such as evolving 124 

factor analysis [32] or the determination of the purest variables [33]. If the initial 125 

estimations are the spectral profiles, the unconstrained least-squares solution for 126 

the concentration profiles can be calculated from the expression:  127 

 C = D (ST)+           (2) 128 

where (ST)+ is the pseudoinverse of the spectral matrix ST [34]. If the initial 129 

estimations were the concentration profiles, the unconstrained least-squares 130 

solution for the spectra can be calculated from the expression:  131 

 ST = C+ D           (3) 132 

where C+ is the pseudoinverse of C. Both steps can be implemented in an 133 

alternating least-squares cycle, so that, at each iteration, new C and ST matrices 134 

are obtained. During these iterative recalculations of C and ST, a series of 135 

constraints (e.g. non-negativity, unimodality and sample selectivity; the latter 136 

removes a component which is known to be absent in a given sample) could be 137 

applied to give physical meaning to the obtained solutions, and to limit their 138 

possible number for the same data fitting and decrease the extent of possible 139 
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rotation ambiguities [35]. Iterations continue until an optimal solution is obtained 140 

that fulfils the postulated constraints and the established convergence criteria.  141 

 The procedure described above can be easily extended to the simultaneous 142 

analysis of multiple data sets or data matrices if they have at least one data mode 143 

(direction) in common. For instance, if the different data sets have been analyzed 144 

by the same spectroscopic method, the possible data arrangement and bilinear 145 

model extension is given by the following equation: 146 

 

     
     
       
     
     
          

cal1 cal1 cal1

cal2 cal2 cal2T T

aug aug aug

test test test

D C E

D C E
D = S + C S E

... ... ...

D C E
     (4) 147 

where Daug is the augmented data matrix, constructed from I individual data 148 

matrices [36], corresponding to the set of calibration samples (Dcal1, Dcal2, ...) and to 149 

a single test sample (Dtest).  150 

In this case, Caug is the column-wise augmented matrix of concentration 151 

profiles (size JI×N, where N is the number of responsive chemical components), ST 152 

is the matrix of loadings (dimensions N×K) in the row vector space, and Eaug 153 

collects the residuals. After decomposition, the scores for analyte n are computed 154 

as the sum of the elements of the corresponding profile in each of the sub-matrices 155 

of Caug. 156 

Finally, the calibration scores are employed to build a pseudo-univariate 157 

calibration line, leading to an estimation of the corresponding slope (mn) and offset 158 

(nn). The analyte score in the test sample is then interpolated in the calibration line 159 

to yield the predicted analyte concentration cn: 160 
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 cn = (atest,n – nn) / mn        (5) 161 

 162 

3. Experimental 163 

3.1. Reagents  164 

Carbendazim (MBC), thiabendazole (TBZ), fuberidazole (FBZ), propoxur 165 

(PRO) and carbaryl (CBL) were purchased from Sigma Aldrich Co. (St. Louis, MO). 166 

Methanol was obtained from Merck. Milli-Q water (Millipore) was used in all 167 

experiments. Solvents were filtered through 0.45 µm filters. 168 

 169 

3.2. Stock standard and working standard solutions 170 

Stock standard solutions of MBC (570 mg L-1), TBZ (1150 mg L-1), FBZ (620 171 

mg L-1), PRO (1720 mg L-1) and CBL (680 mg L-1) were prepared in 25.00 mL 172 

volumetric flasks by dissolving accurately weighed amounts of the drugs in 173 

methanol and completing to the mark with the same solvent. From these solutions, 174 

more diluted solutions were obtained (MBC 22.8 mg L-1, TBZ 20.7 mg L-1, FBZ 175 

9.92 mg L-1, PRO 172 mg L-1, CBL 13.6 mg L-1). Working solutions were prepared 176 

immediately before their use by taking appropriate aliquots of solutions and diluting 177 

with methanol and water (50:50 v/v) to the desired concentrations. 178 

 179 

3.3. Apparatus  180 

Chromatographic runs were performed on an HP 1200 liquid chromatograph 181 

(Agilent Technologies, Waldbronn, Germany) consisting of a quaternary pump, a 182 

manual injector fitted with a 200 µL loop and a diode array UV–visible detector set 183 

at a wavelength range from 200 to 350 nm. A C18 column of 150mm×4.6mm, 5µm 184 
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particle size was employed (Agilent Sorbax SB). The data were collected using the 185 

software HP ChemStation for LC Rev.HP 1990–1997. 186 

 187 

3.4. Software 188 

The data were handled using the MATLAB computer environment [37]. The 189 

calculations involved in the mixture resolution by MCR-ALS have been made using 190 

mvc2_gui, a MATLAB graphical interface toolbox which is a new version of that 191 

already reported in the literature [38]. 192 

 193 

3.5. Calibration and validation samples 194 

In order to design the calibration set, preliminary experiments were 195 

performed with the pure analytes, showing that the full elution time range could be 196 

divided into three relevant regions: an overlapped zone where three analytes 197 

appear (TBZ, PRO and FBZ) and two regions where the remaining two analytes 198 

are fully resolved (MBC and CRL). A set of 18 calibration solutions containing the 199 

analytes in the ranges 0 - 228 g L-1 for MBC, 0 - 207 g L-1 for TBZ, 0 - 1720 g L-200 

1 for PRO, 0 – 99.2 g L-1 for FBZ and 0 - 136 g L-1 for CBL were prepared in 201 

appropriate volumetric flasks. The concentrations are collected in Table 1. Fifteen 202 

of these samples correspond to the concentrations provided by a central composite 203 

design for the three analytes appearing in the overlapped region: TBZ, PRO and 204 

FBZ. Each of the remaining three samples of the 18-sample set corresponds to 205 

each of the three pure analytes at their maximum levels. Each of these 18 samples 206 

was combined with nine equally spaced, duplicate concentration levels for the two 207 
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resolved analytes. For establishing the calibration concentration ranges, the linear 208 

range for all components was studied by analyzing different solutions covering the 209 

interval 0–2000 g L-1. 210 

A validation set of 10 samples was also prepared, containing the five 211 

analytes in concentrations different than those used for calibration, and following a 212 

random design, i.e., the specific concentrations were taken as random numbers 213 

generated within the calibration domain. 214 

 215 

3.6. Samples and sample preparation 216 

Tangerine, lemon, tomato and commercially available orange and grapefruit 217 

juice were purchased from local supermarkets. The fruits and vegetables were 218 

chopped into small pieces and processed. Accurately weighted portions of fruits 219 

and vegetable samples and aliquots of juice samples were spiked with the assayed 220 

pesticides. The semi-solid samples (processed tangerine, lemon and tomato) were 221 

blended with water. The pH of the pesticides-spiked samples was adjusted to 222 

neutral by addition of a solution of NaOH. Each sample was centrifuged for 10 min 223 

at 4000 g, the supernatant was diluted with methanol and the sample was 224 

centrifuged again in the same conditions. Finally, each sample was filtered twice 225 

prior to injection: first through a 0.45 m nylon filter and then through a 0.22 m 226 

nylon filter.  227 

 228 

3.7. HPLC procedure 229 
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The data matrices were collected using wavelengths from 200 to 350 nm 230 

each 1 nm, and each 1.6 s in the elution time axis. The slit width was 1 nm. The 231 

time-absorption matrices were of size 356 × 151 and were saved in ASCII format, 232 

and transferred to a PC for subsequent manipulation.  233 

The mobile phase used for all chromatographic runs was a 50:50 (v/v) 234 

mixture of water and methanol, delivered at a flow rate of 1.0 mL min-1 with a 235 

chromatographic system operating under isocratic mode. Each chromatogram was 236 

accomplished in 9.5 minutes. 237 

 238 

4. Results and discussion 239 

4.1. Analysis of the calibration set 240 

Using pure analyte standards, a chromatographic method allowing their 241 

partial separation was developed, making proper selection of the range of detected 242 

wavelengths and the composition of the mobile phase, in order to obtain an overall 243 

chromatographic time of less than 10 min. Under these conditions, when 244 

calibration samples were eluted, a cluster of coeluting peaks and two individual, 245 

fully resolved peaks appeared in all chromatographic runs (Fig. 2). Specifically, the 246 

MCR-ALS algorithm was used to process LC–DAD matrices taken at specific 247 

elution time ranges. Each chromatographic data matrix was divided in the following 248 

time regions: region I (3.3–6.9 min) and region II (7.3–9.5 min). These regions 249 

were delimited taking into account the spectrum of each analyte (Fig. 3), i.e., the 250 

wavelength ranges required to resolve them. Region I includes the four first eluted 251 

analytes: MBC, TBZ, PRO and FBZ. The spectrum of these analytes show that the 252 

high sensitivity range is from 250 nm to 350 nm, thus the wavelength range from 253 
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200 nm to 249 nm was discarded in their analysis. However, region II includes the 254 

last eluted analyte, CBL, whose maximum absorption peak is at 220 nm. In this 255 

region, the full wavelength range was selected. 256 

 257 

 258 

Figure 2 259 
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 260 

Figure 3 261 

 262 

Notice in Fig. 2 that the the analyte elution time profiles significantly shift 263 

from run to run. This effect, combined with the presence of potential interferents in 264 

some of the analyzed samples, makes it difficult to align the chromatograms in the 265 

time mode, in order to restore the trilinearity required by some second-order 266 

multivariate algorithms. This is the main reason for employing the MCR–ALS 267 

algorithm for data processing. For each time region, MCR–ALS was applied to 268 

augmented matrices in the elution time direction, corresponding to the 269 

simultaneous analysis of the HPLC–DAD data matrices for the calibration set of 270 

samples. In this analysis, initialization of the multivariate algorithm was performed 271 
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using spectral estimates obtained from the analysis of the purest variables. Non-272 

negativity restriction was applied in both modes; unimodality restriction was applied 273 

in the elution time mode only to the signals corresponding to the analytes (not to 274 

the background signal) but correspondence restriction was not applied during the 275 

ALS optimization phase. 276 

The number of components was estimated by means of principal component 277 

analysis (PCA). The estimated number of components was five in region I and two 278 

in region II, which can be justified taking into account the presence of five different 279 

signals (corresponding to MBC, TBZ, PRO, FBZ and a background signal) in 280 

region I and two different signals (corresponding to CBL and a background signal) 281 

in region II. The resolution of calibration samples provided the characteristic 282 

chromatographic profiles and pure spectra for the different analytes plus one signal 283 

corresponding to a background. The number of iterations was less than 10 in all 284 

cases, with a residual fit lower than 0.07 mUA (region I) and 0.1 mUA (region II). 285 

Both residual fits are on the order of the expected instrumental noise associated 286 

with DAD detection. 287 

After MCR–ALS resolution of the augmented calibration matrix, a pseudo-288 

univariate calibration was carried out for each compound. The parameters 289 

corresponding to the linear regression of the scores from Eq. (5) vs. the 290 

corresponding nominal concentrations are shown in Table 2.  291 
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 292 

Figure 4 293 

 294 

Region I corresponds to the fully overlapped peaks for PRO and FBZ, the 295 

partially overlapped peak for TBZ and also to the isolated peak for MBC (Fig. 4A). 296 

Five different independent contributions were resolved by MCR–ALS in the first 297 

peak cluster, corresponding to region I (Fig. 4A). For a typical sample, the five 298 

MCR–ALS resolved elution profiles are shown in Fig. 4B, and the spectra (common 299 
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to all samples) in Fig. 4C. These five contributions were identified as the analytes 300 

MBC, TBZ, PRO, FBZ and a background signal by comparison of the MCR-301 

obtained spectra with the actual spectra of the pure compounds (Fig. 3). 302 

Coelutions shown in Fig. 4A are untreatable by traditional chromatography; 303 

however, mathematical resolution using MCR–ALS was still possible by processing 304 

second-order HPLC–DAD data.  305 

Region II contained a fully resolved peak at 8.3 min belonging to CBL. The 306 

analysis of CBL was done both by the traditional method of area measurements 307 

and by applying MCR–ALS to the sub-matrix containing its isolated peak. There 308 

were not significant differences between the results obtained in both ways 309 

(p=0.337). Figure 4D, 4E and 4F show the contour plot, the chromatogram and 310 

spectrum corresponding to this region.   311 

 312 

4.2. Analysis of the validation set 313 

As indicated above, data matrices were analyzed by creating augmented 314 

matrices with sub-matrices corresponding to specific time and wavelength windows 315 

(regions I and II). For quantifying the analytes in the validation set of samples, each 316 

validation HPLC–DAD data matrix was divided into the two selected regions. For 317 

each time region, a time mode augmented matrix was created. Each augmented 318 

matrix contained, adjacent to each other, the sub-matrices corresponding to the 319 

validation samples and to the calibration samples. As before, non-negativity in both 320 

modes and unimodality in the time mode (but not correspondence) were applied 321 

during ALS optimization. Unimodality was only applied to the signal corresponding 322 

to the analytes but not to the background signals. After optimization with the 323 
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multivariate algorithm, the scores corresponding to each analyte in each validation 324 

sample were isolated, and prediction proceeded by interpolation into the pseudo-325 

univariate score-concentration calibration plot. Linear relationships between MCR–326 

ALS scores and nominal concentrations were found in all cases, supported by the 327 

linearity test recommended by IUPAC [39]. The statistical results when MCR–ALS 328 

was applied to this validation set are shown in Table 2, implying linearity for all 329 

analytes.  330 

As can be observed in Table 3, the predictions for the five analytes are in 331 

good agreement with the corresponding nominal values. The root mean square 332 

error of prediction (RMSEP) and the relative errors of prediction (REP), computed 333 

with respect to the mean calibration concentration of each analyte, can be 334 

calculated as follows: 335 

        (6) 336 

          (7) 337 

where ypred,t is the predicted concentration in each sample, ynom,t is the nominal 338 

value of the concentration in the sample, T is he number of test samples, and ȳ cal 339 

is the mean calibration concentration. The RMSEP and REP values are also 340 

quoted in Table 3. The limits of detection (LOD) and limits of quantification (LOQ) 341 

were calculated taking into account the errors of the slope and intercept of the 342 

pseudo-univariate calibration curves, as was previously reported by Saurina et al 343 

[40].  344 

 345 
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 346 

4.3. Analysis of spiked real samples 347 

Official regulating agencies recommend maximum residue levels (MRL) for 348 

the presently studied pesticides which are listed in Table 4 for the assayed fruits 349 

and vegetables samples. As can be seen, these values are higher than the 350 

calculated LOD (Table 3), and thus analyte pre-concentration is not required. 351 

Real fruit and vegetable samples were spiked with these five pesticides and 352 

were subjected to the analytical protocol discussed above. The estimated number 353 

of components was seven or eight in region I and four in region II, i.e., there are 354 

additional components in comparison to the calibration and validation samples. 355 

Therefore, the analysis of these samples revealed that there are various interfering 356 

species in each region, depending on the sample.  357 
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 358 

Figure 5 359 

Each data matrix was divided into the two selected regions. As before, non-360 

negativity in both modes and unimodality in the time mode were applied during 361 

ALS optimization. Unimodality was only applied to the signal corresponding to the 362 

analytes but not to the background signals or to the signals corresponding to 363 

interferents. In fact, some of the signals corresponding to interferents have more 364 

than one maximum in the time mode. This may be indicating that the interferents 365 

are not unique compounds, but also a combination of compounds with similar UV 366 
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spectra that cannot be resolved by MCR. As regards the correspondence 367 

restriction (which informs MCR-ALS that the potential interferents are absent in the 368 

calibration samples), it is interesting that there was no significant difference when 369 

applying correspondence or when this restriction was not applied. The number of 370 

iterations was less than 100 in all cases, with a residual fit lower than 0.3 mUA 371 

(region I) and 0.45 mUA (region II).  372 

Figure 5 (A to F) shows the contour plot, the chromatogram and spectrum 373 

corresponding to both regions for one sample of orange juice. As can be seen, the 374 

spectra corresponding to the interfering species were different to those 375 

corresponding to the pesticides, allowing their resolution. The recovery results 376 

corresponding to different levels of each pesticide the five type of sample assayed 377 

are collected in Table 4. As can be appreciated, the predictions for the analytes are 378 

in good agreement with the nominal values. If the elliptical joint confidence region 379 

is analyzed for the slope and intercept of plot of predicted vs. nominal 380 

concentrations we conclude that the ellipse includes the theoretically expected 381 

values of (1,0), indicating the accuracy of the used methodology (data not shown). 382 

Indeed, a paired t-test indicates no significant difference between the nominal 383 

concentrations and the predicted using the presently proposed methodology. The p 384 

values are also listed in Table 4. This strongly suggests that HPLC-DAD combined 385 

to MCR-ALS is a useful methodology for the analysis of these pesticides in 386 

commercial juices, fruit and vegetable samples. 387 

 388 

 389 

 390 
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5. Conclusions 391 

Complex samples including strongly coeluting analytes, elution time shifts, 392 

band shape changes and presence of uncalibrated interferents have been 393 

analyzed by HPLC–DAD. The flexibility of the applied multivariate model (MCR–394 

ALS) allows the prediction of the concentrations of five analytes in a set of 395 

validation samples. More importantly, in the most challenging analytical scenario, 396 

i.e., real vegetable and fruit samples, these five analytes were quantified within a 397 

coeluting cluster in the presence of unwanted and non calibrated signals, achieving 398 

the second-order advantage which is inherent to second-order HPLC–DAD 399 

information. 400 
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Table 1: Calibration concentrations (g L–1) for the five assayed analytes. 475 

Sample MBC TBZ PRO FBZ CBL 

1 0.0 62.1 1376 79.4 136.0 

2 0.0 165.6 1376 79.4 122.4 

3 22.8 62.1 516 79.4 102.0 

4 22.8 165.6 516 29.8 81.6 

5 57.0 165.6 1376 29.8 68.0 

6 57.0 62.1 1376 29.8 54.4 

7 91.2 113.8 172 54.6 34.0 

8 91.2 113.8 946 9.9 13.6 

9 114.0 113.8 1720 54.6 0.0 

10 114.0 165.6 516 79.4 136.0 

11 136.8 113.8 946 54.6 122.4 

12 136.8 207.0 946 54.6 102.0 

13 171.0 20.7 946 54.6 81.6 

14 171.0 113.8 946 99.2 68.0 

15 205.2 62.1 516 29.8 54.4 

16 205.2 207.0 0 0.0 34.0 

17 228.0 0.0 1720 0.0 13.6 

18 228.0 0.0 0 99.2 0.0 

 476 

477 
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Table 2: Summary of the results from the pseudo-univariate calibration curves for 478 

all analytes a. 479 

 Slope b Intercept b r2 sy/x p value 

MBC 1.48(3) -2(4) 0.9833 14 0.161 

TBZ 5.16(7) 11(9) 0.9894 29 0.464 

PRO 0.252(4) 7(4) 0.9917 13 0.603 

FBZ 9.8(2) 20(10) 0.9894 33 0.262 

CBL 12.0(2) -10(10) 0.9902 56 0.253 

 480 

a
 r

2
, squared correlation coefficient; sy/x, standard deviation of regression residuals, p value, 481 

probability associated to the IUPAC recommended F test for linearity (p > 0.05 implies linearity at 482 

95% confidence level). 483 

b 
Standard deviation in parenthesis. 484 

485 
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Table 3: MCR–ALS results for the prediction of the studied analytes in the validation set of samples. 486 

Sample 

MBC (g L
-1
) TBZ (g L

-1
) PRO (g L

-1
) FBZ (g L

-1
) CBL (g L

-1
) 

N P
a
 N P

a
 N P

a
 N P

a
 N P

a
 

1 173.0 170(6) 95.2 87.1(2) 963 920(30) 9.9 10(2) 12.2 11.3(7) 

2 166.0 165(4) 137.0 136(3) 1030 1070(10) 82.3 81(4) 121.0 123(3) 

3 0.0 1.1(2) 149.0 146.7(4) 602 570(10) 32.7 31(3) 70.7 69(2) 

4 228.0 234(7) 53.8 51(2) 1340 1240(60) 21.8 21(2) 96.6 94(2) 

5 160.0 157(5) 164.0 158(3) 1170 1160(10) 71.4 71(4) 132.0 125(2) 

6 77.5 75.8(4) 51.8 54.2(2) 1100 1100(10) 36.7 36.1(4) 44.9 46.1(9) 

7 22.8 24(2) 176.0 185(2) 1340 1360(10) 45.6 44.6(4) 46.2 47.7(6) 

8 166.0 166(5) 74.5 73(2) 654 603(8) 0.9 - 89.8 88(2) 

9 185.0 188(5) 20.7 15.7(1) 1200 1180(20) 13.9 13(2) 20.4 20.5(9) 

10 66.1 66(2) 186.0 185.8(3) 361 340(10) 54.6 55(3) 6.8 6(2) 

RMSEP 2.6 4.7 43 0.85 2.6 

REP (%) 2.1 4.3 4.4 2.3 4.0 

LOD 2.3 0.90 12 0.46 0.32 

LOQ 6.9 2.7 36 1.4 1.1 

Sensitivity 0.092 0.24 0.018 0.47 1.2 

Selectivity 0.53 0.29 0.69 0.31 0.73 

Analytical  

sensitivity 
1.4 3.7 0.28 7.2 2.9 

  487 

 
a
 Standard deviation in parenthesis. N = nominal, P = predicted. 488 

489 
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Table 4: MCR–ALS results for the prediction of the studied analytes in the spiked samples. 490 

Sample 

MBC (g L
-1
) TBZ (g L

-1
) PRO (g L

-1
) FBZ (g L

-1
) CBL (g L

-1
) 

N P
a
 N P

a
 N P

a
 N P

a
 N P

a
 

O
ra

n
g
e
 J

u
ic

e
 

1 185.0 195(4) 16.6 15.9(7) 1170 1310(20) 79.4 72.2(7) 5.7 6.91(7) 

2 73.0 80(3) 10.4 12.2(7) 48 57(1) 30.8 28.1(4) 88.4 97(1) 

3 11.4 15(3) 47.6 43.1(8) 860 940(10) 34.7 35.3(4) 42.2 48.6(6) 

4 153.0 145(5) 93.1 84(2) 22 36(2) 12.9 8.1(3) 15.0 16.2(8) 

MRL 200 5000 50 50 10 

RMSEP 7.6 5.2 81 4.5 5.4 

REP (%) 6.6 4.9 9.2 8.9 8.0 

G
ra

p
e
fr

u
it
 J

u
ic

e
 

5 210.0 218(6) 76.6 72(4) 1030 1080(20) 41.7 44(1) 135.0 132(6) 

6 198.0 191(5) 201.0 205(8) 69 53(4) 14.9 11.8(6) 6.8 7.9(3) 

7 155.0 163(5) 153.0 160(6) 1720 1810(40) 77.4 81(2) 16.3 12.2(6) 

8 25.1 20.1(9) 64.2 70(3) 34 37(3) 45.6 42(2) 105.0 101(4) 

MRL 200 5000 50 50 10 

RMSEP 7.2 5.5 52 3.2 3.1 

REP (%) 6.4 5.1 5.8 6.3 4.6 

L
e
m

o
n
 

9 160.0 151(3) 80.7 75(2) 224 250(10) 14.9 15.5(4) 40.8 38.8(9) 

10 66.1 70(2) 97.3 103(3) 172 180(10) 68.4 71(1) 72.1 75(2) 

11 228.0 239(5) 132.0 136(3) 1690 1670(20) 71.4 69(1) 69.4 64(2) 

12 29.6 30.1(6) 82.8 79(2) 654 690(20) 48.6 50.5(8) 6.8 7.5(7) 

MRL 700 5000 300 50 10 

RMSEP 7.2 4.8 44 2.0 3.2 

REP (%) 6.4 4.5 5.0 4.0 4.8 

 491 

This table continues in the next page. 492 

493 
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Table 4 (continued) 494 
T

a
n
g
e
ri
n

e
 

13 132.0 125(3) 159.0 150(10) 1100 1070(20) 5.9 5.2(1) 132.0 125(2) 

14 198.0 204(5) 97.3 102(5) 1200 1140(20) 20.8 19(1) 15.0 12.1(2) 

15 93.5 97(2) 207.0 200(20) 430 440(10) 87.3 83(1) 80.2 78(1) 

16 59.3 64(2) 132.0 126(6) 155 125(7) 41.7 47(2) 6.8 6.6(3) 

MRL 700 5000 300 50 10 

RMSEP 5.4 7.1 39 3.6 3.9 

REP (%) 4.8 6.7 4.4 7.0 5.8 

T
o

m
a
to

 

17 38.8 42(1) 84.9 87.6(9) 206 166(4) 21.8 29.6(4) 124.0 131(3) 

18 80.9 76(2) 97.3 91(1) 1010 970(10) 25.8 23.5(3) 8.2 9.8(2) 

19 108.0 115(2) 128.0 121(1) 740 797(8) 60.5 56.9(7) 59.8 65(2) 

20 213.0 203(3) 15.5 21.3(7) 17 38(7) 40.0 43.6(6) 24.5 21(2) 

MRL 300 50 50 50 10 

RMSEP 6.8 5.8 43 4.8 4.8 

REP (%) 5.9 5.4 4.9 9.5 7.1 

p value 0.389 0.206 0.794 0.439 0.694 

 495 

 
a
 Standard deviation in parenthesis. N = nominal, P = predicted. 496 

497 
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Figure captions 498 

Figure 1: Chemical structures of the five assayed pesticides. 499 

 500 

Figure 2: Liquid chromatograms ( of detection: 280 nm) for the set of calibration 501 

samples. The signal corresponding to each analyte was identified. The subregions 502 

selected are highlighted. 503 

 504 

Figure 3: Spectra of pure standards of the five assayed pesticides in medium 505 

methanol-water (50:50 v/v). Pesticide concentration: 1 mg/L.  506 

 507 

Figure 4: Results for the analysis of a calibration sample. (A) Surface plot around 508 

the first cluster peak (region I) containing the analytes MBC, TBZ, PRO and FBZ 509 

(B) MCR–ALS resolved elution profiles for the same sample, with all analytes 510 

indicated. (C) Spectral profiles retrieved by MCR–ALS analysis, which are common 511 

to all samples. (D) Surface plot around the region II containing CBL (E) MCR–ALS 512 

resolved elution profiles in region II. (F) Spectral profiles retrieved by MCR–ALS 513 

analysis. 514 

 515 

Figure 5: Results for the analysis of an orange juice sample. (A) Surface plot 516 

around the first cluster peak (region I) containing the analytes MBC, TBZ, PRO and 517 

FBZ (B) MCR–ALS resolved elution profiles for the same sample, with all analytes 518 

indicated. (C) Spectral profiles retrieved by MCR–ALS analysis. (D) Surface plot 519 
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around the region II containing CBL (E) MCR–ALS resolved elution profiles in 520 

region II. (F) Spectral profiles retrieved by MCR–ALS analysis. 521 

 522 
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Abstract 14 

The aim of this work was to quantify five commonly used pesticides 15 

(propoxur, carbaryl, carbendazim, thiabendazole and fuberidazole) in real samples 16 

as: tomato, orange juice, grapefruit juice, lemon and tangerine. The method used 17 

for the determination of these analytes in the complex matrices was high-18 

performance liquid chromatography with diode array detection. In order to work 19 

under isocratic conditions and to complete each run in less than 10 min, the 20 

analysis was carried out applying multivariate curve resolution coupled to 21 

alternating least-squares (MCR–ALS). The flexibility of this applied multivariate 22 

model allowed the prediction of the concentrations of the five analytes in complex 23 

samples including strongly coeluting analytes, elution time shifts, band shape 24 

changes and presence of uncalibrated interferents. The obtained limits of detection 25 

(in g L–1) using the proposed methodology were 2.3 (carbendazim), 0.90 26 

(thiabendazole), 12 (propoxur), 0.46 (fuberidazole) and 0.32 (carbaryl).  27 

 28 

Keywords 29 

High-performance liquid chromatography; Diode array detection; Multivariate curve 30 

resolution; Pesticides; Vegetable samples 31 

 32 

Abbreviations 33 

High-performance liquid chromatography (HPLC), diode array detection (DAD), 34 

multivariate curve resolution coupled to alternating least-squares (MCR-ALS), 35 
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propoxur (PRO), carbaryl (CBL), carbendazim (MBC), thiabendazole (TBZ), 36 

fuberidazole (FBZ) 37 

 38 

1. Introduction 39 

Although the use of pesticides provides unquestionable benefits in providing 40 

a plentiful, low-cost supply of high-quality fruits and vegetables, their incorrect 41 

application may leave harmful residues, which involve possible health risk [1]. The 42 

concentration of pesticides is regulated in many samples such as drinking waters, 43 

vegetables, juices, etc., by the European Commission [2] and the Food and Drug 44 

Administration [3], among other agencies. Traditionally, the instrumental 45 

techniques employed to determine these compounds involve fluorescence, gas or 46 

liquid chromatography [4-8]. Specifically, the determination of benzimidazolic 47 

pesticides (carbendazim, thiabendazole and fuberidazole) and/or carbamates 48 

(carbaryl, propoxur and carbendazim) in fruits and vegetables have been carried 49 

out by various approaches, such as supramolecular solvent-based microextraction 50 

followed by high-performance liquid chromatography (HPLC) with fluorescence 51 

detection [9], gas chromatography coupled to mass spectrometry and selected ion 52 

monitoring [10], enzymatic immunoassay using antibodies [11-13] or 53 

electrochemical methods [14, 15].   54 

The analysis of mixtures of pesticides using methods based on high-55 

performance liquid chromatography (HPLC) sometimes results in complex 56 

separations and overlapped peaks [16, 17]. Nevertheless, complex 57 

multicomponent mixtures can in many cases be qualitatively and quantitatively 58 

resolved by means of chemometrics. Depending on their nature, data can be 59 
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arranged in a two-way structure (a table or a matrix), as in the case of collecting 60 

the absorbance spectra for many samples, or in a three-way structure, e.g. in 61 

HPLC with diode array detection (DAD), where spectra are recorded at several 62 

elution times for each sample. Such data arrangements in three- or higher way 63 

arrays can be handled using multi-way methods of analysis [18, 19].  64 

Collection of multi-dimensional chromatographic information, and data 65 

processing by advanced chemometric algorithms constitute a fruitful combination 66 

of techniques, recently applied to diverse research areas [20-22]. Chemometrics is 67 

required whenever perfect separation of the various sample components cannot be 68 

achieved by the employed chromatographic system, leading to overlapping peaks 69 

in the elution time mode. In these cases, selectivity may be mathematically 70 

restored by applying multivariate data analysis [23]. In particular, the so-called 71 

second-order advantage can be achieved, a property which is inherent to matrix 72 

instrumental data, and implies that analytes can be quantified in samples 73 

containing potential interferences [21]. Signals arising from coeluting analytes or 74 

foreign components can be modeled by powerful second-order multivariate 75 

algorithms.  76 

The combination of chemometrics to HPLC presents additional advantages 77 

in relation to traditional methods: since chemometrics allows resolving coeluted 78 

peaks, it is possible to reduce the duration of the chromatographic run, allowing not 79 

only processing more samples but also reducing the solvent consumption, saving 80 

time and money. Moreover, several authors report that gradient of solvents was 81 

required to achieve resolution of the analytes [24-26]: this requirement may be 82 
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avoided using isocratic conditions and resolving the peak by applying 83 

chemometrics.  84 

In liquid chromatographic runs, elution time shifts and band shape changes 85 

usually occur from sample to sample: in these cases, a useful alternative is to 86 

analyze the data with flexible algorithms, which allow a given component to present 87 

different time profiles in different samples, such as parallel factor analysis 2 88 

(PARAFAC2) or multivariate curve resolution coupled to alternating least-squares 89 

(MCR-ALS) [27]. Recent work from our laboratory indicated better performance 90 

with MCR–ALS in the case of multi-analyte quantification in the presence of high 91 

overlapping of elution profiles and uncalibrated interferences, mainly because of 92 

the possibility of building a more constrained model in MCR–ALS in comparison 93 

with PARAFAC2 [22].  94 

In the present report, we selected MCR–ALS as the algorithm of choice for 95 

processing HPLC-DAD data, and discuss its behavior towards the quantification of 96 

the following five pesticides in fruit and vegetable samples: propoxur (PRO), 97 

carbaryl (CBL), carbendazim (MBC), thiabendazole (TBZ) and fuberidazole (FBZ) 98 

(Fig. 1). The presence of benzimidazoles, carbamates and their degradation 99 

products in waters or food products is potentially harmful for humans due to their 100 

proven toxicity. This is the cause of the continued interest in the development of 101 

analytical methods for monitoring these families of compounds. Previous 102 

chromatographic analysis of the presently studied compounds required up to 35 103 

min [28, 29]. The aim of this work is to quantify these analytes in complex matrices 104 

under HPLC isocratic conditions and in less than 10 min.  105 
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 106 

Figure 1 107 

2. Theory 108 

The bilinear model assumed by MCR methods is analogous to the 109 

generalized Lambert-Beer’s law, where the individual responses of each 110 

component are additive. In matrix form, this bilinear model is expressed as: 111 

 D = C ST + E           (1)112 

where D (size JK) is the matrix of experimental data (J is the number of elution 113 

time data points and K is the number of absorption wavelengths), C (size JN) is 114 

the matrix whose columns contain the concentration profiles of the N components 115 

present in the samples, ST (size NK) is the matrix whose rows contain the 116 
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component spectra and E (size JK) is a matrix collecting the experimental error 117 

and the variance not explained by the bilinear model of equation (1).  118 

 The first step in MCR-ALS studies is to obtain a rough estimation of the 119 

number of components, which can be simply performed by visual inspection of 120 

singular values or principal component analysis (PCA) [30, 31]. plots for the matrix 121 

of experimental data. This initial number of components can be then refined if 122 

necessary, i.e., increasing or decreasing the number of components, depending on 123 

their fit and chemical reasonability.   124 

The resolution is accomplished using an iterative ALS procedure, initialized 125 

using an initial estimation of the spectral or concentration profiles for each 126 

intervening species. Different methods are used for this purpose, such as evolving 127 

factor analysis [32] or the determination of the purest variables [33]. If the initial 128 

estimations are the spectral profiles, the unconstrained least-squares solution for 129 

the concentration profiles can be calculated from the expression:  130 

 C = D (ST)+           (2) 131 

where (ST)+ is the pseudoinverse of the spectral matrix ST, which is equal to 132 

[S(STS)−1] when ST is full rank [34]. If the initial estimations were the concentration 133 

profiles, the unconstrained least-squares solution for the spectra can be calculated 134 

from the expression:  135 

 ST = C+ D           (3) 136 

where C+ is the pseudoinverse of C [C+ = (CTC)−1CT], when C is full rank. 137 

Both steps can be implemented in an alternating least-squares cycle, so that, at 138 

each iteration, new C and ST matrices are obtained. During these iterative 139 
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recalculations of C and ST, a series of constraints are (e.g. non-negativity, 140 

unimodality and sample selectivity; the latter removes a component which is known 141 

to be absent in a given sample) could be applied to give physical meaning to the 142 

obtained solutions, and to limit their possible number for the same data fitting and 143 

decrease the extent of possible rotation ambiguities [35]. Iterations continue until 144 

an optimal solution is obtained that fulfils the postulated constraints and the 145 

established convergence criteria. Non-negativity constraints may be applied to the 146 

concentration profiles, due to the fact that the concentrations of the chemical 147 

species are always positive values or zero. Non-negativity constraints can also 148 

applied for UV-Vis spectra. Unimodality is a constraint which can be applied to 149 

profiles having a single maximum, as in the case of chromatographic profiles.  150 

 The procedure described above can be easily extended to the simultaneous 151 

analysis of multiple data sets or data matrices if they have at least one data mode 152 

(direction) in common. For instance, if the different data sets have been analyzed 153 

by the same spectroscopic method, the possible data arrangement and bilinear 154 

model extension is given by the following equation: 155 

 

     
     
       
     
     
          

cal1 cal1 cal1

cal2 cal2 cal2T T

aug aug aug

test test test

D C E

D C E
D = S + C S E

... ... ...

D C E
     (4) 156 

where Daug is the augmented data matrix, constructed from I individual data 157 

matrices [36], corresponding to the set of calibration samples (Dcal1, Dcal2, ...) and to 158 

a single test sample (Dtest). Each of these data matrices has size J×K, where J is 159 

the number of rows and K is the number of columns. In this column-wise 160 
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augmentation mode, the data matrices are placed on top of each other, giving the 161 

matrix Daug of size IJ×K, which keeps the same number of columns in all of them, 162 

and where the different data matrices share their column vector space, Caug is the 163 

column-wise augmented matrix of size IJ×N, and Eaug is the corresponding 164 

augmented error matrix. This extended MCR-ALS approach can be used to obtain 165 

quantitative determination of an analyte in the presence of other sample 166 

components (e.g. interferents).  167 

In this case, Caug is the column-wise augmented matrix of concentration 168 

profiles (size JI×N, where N is the number of responsive chemical components), ST 169 

is the matrix of loadings (dimensions N×K) in the row vector space, and Eaug 170 

collects the residuals. After decomposition, the scores for analyte n are computed 171 

as the sum of the elements of the corresponding profile in each of the sub-matrices 172 

of Caug. Specifically, the analyte calibration score in the calibration sample i (acali,n) 173 

is calculated from the elements of the Ccali matrix, which corresponds to the analyte 174 

in each calibration sample: 175 

 



J

j

ini njca
1

cal,cal ),(          (5) 176 

where cali identifies the calibration sample, n the component of interest, j each of 177 

the data points or channels in the sub-matrix along the non-augmented mode and 178 

ccali(j,n) the element of the Ccali matrix at channel j for component n. On the other 179 

hand, the analyte score in the test sample (atest,n) is defined analogously from the 180 

Ctest matrix, which corresponds to the analyte in the test sample: 181 





J

j

n njca
1

test,test ),(          (6) 182 
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where ctest(j,n) is an element of the Ctest matrix [see equation (4)]. 183 

Finally, the calibration scores are employed to build a pseudo-univariate 184 

calibration line, leading to an estimation of the corresponding slope (mn) and offset 185 

(nn). The analyte score in the test sample is then interpolated in the calibration line 186 

to yield the predicted analyte concentration cn: 187 

 cn = (atest,n – nn) / mn        (5) 188 

In extended MCR-ALS analysis, another useful constraint which can be 189 

applied is the so-called correspondence or sample selectivity, which informs the 190 

algorithm that certain components are absent in some samples, e.g., potential 191 

interferents may be present in the unknowns but absent in the calibration samples. 192 

 193 

3. Experimental 194 

3.1. Reagents  195 

Carbendazim (MBC), thiabendazole (TBZ), fuberidazole (FBZ), propoxur 196 

(PRO) and carbaryl (CBL) were purchased from Sigma Aldrich Co. (St. Louis, MO). 197 

Methanol was obtained from Merck. Milli-Q water (Millipore) was used in all 198 

experiments. Solvents were filtered through 0.45 µm filters. 199 

 200 

3.2. Stock standard and working standard solutions 201 

Stock standard solutions of MBC (570 mg L-1), TBZ (1150 mg L-1), FBZ (620 202 

mg L-1), PRO (1720 mg L-1) and CBL (680 mg L-1) were prepared in 25.00 mL 203 

volumetric flasks by dissolving accurately weighed amounts of the drugs in 204 

methanol and completing to the mark with the same solvent. From these solutions, 205 

more diluted solutions were obtained (MBC 22.8 mg L-1, TBZ 20.7 mg L-1, FBZ 206 
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9.92 mg L-1, PRO 172 mg L-1, CBL 13.6 mg L-1). Working solutions were prepared 207 

immediately before their use by taking appropriate aliquots of solutions and diluting 208 

with methanol and water (50:50 v/v) to the desired concentrations. 209 

 210 

3.3. Apparatus  211 

Chromatographic runs were performed on an HP 1200 liquid chromatograph 212 

(Agilent Technologies, Waldbronn, Germany) consisting of a quaternary pump, a 213 

manual injector fitted with a 200 µL loop and a diode array UV–visible detector set 214 

at a wavelength range from 200 to 350 nm. A C18 column of 150mm×4.6mm, 5µm 215 

particle size was employed (Agilent Sorbax SB). The data were collected using the 216 

software HP ChemStation for LC Rev.HP 1990–1997. 217 

 218 

3.4. Software 219 

The data were handled using the MATLAB computer environment [37]. The 220 

calculations involved in the mixture resolution by MCR-ALS have been made using 221 

mvc2_gui, a MATLAB graphical interface toolbox which is a new version of that 222 

already reported in the literature [38]. 223 

 224 

3.5. Calibration and validation samples 225 

In order to design the calibration set, preliminary experiments were 226 

performed with the pure analytes, showing that the full elution time range could be 227 

divided into three relevant regions: an overlapped zone where three analytes 228 

appear (TBZ, PRO and FBZ) and two regions where the remaining two analytes 229 

are fully resolved (MBC and CRL). A set of 18 calibration solutions containing the 230 
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analytes in the ranges 0 - 228 g L-1 for MBC, 0 - 207 g L-1 for TBZ, 0 - 1720 g L-231 

1 for PRO, 0 – 99.2 g L-1 for FBZ and 0 - 136 g L-1 for CBL were prepared in 232 

appropriate volumetric flasks. The concentrations are collected in Table 1. Fifteen 233 

of these samples correspond to the concentrations provided by a central composite 234 

design for the three analytes appearing in the overlapped region: TBZ, PRO and 235 

FBZ. Each of the remaining three samples of the 18-sample set corresponds to 236 

each of the three pure analytes at their maximum levels. Each of these 18 samples 237 

was combined with nine equally spaced, duplicate concentration levels for the two 238 

resolved analytes. For establishing the calibration concentration ranges, the linear 239 

range for all components was studied by analyzing different solutions covering the 240 

interval 0–2000 g L-1. 241 

A validation set of 10 samples was also prepared, containing the five 242 

analytes in concentrations different than those used for calibration, and following a 243 

random design, i.e., the specific concentrations were taken as random numbers 244 

generated within the calibration domain. 245 

 246 

3.6. Samples and sample preparation 247 

Tangerine, lemon, tomato and commercially available orange and grapefruit 248 

juice were purchased from local supermarkets. The fruits and vegetables were 249 

chopped into small pieces and processed. Accurately weighted portions of fruits 250 

and vegetable samples and aliquots of juice samples were spiked with the assayed 251 

pesticides. The semi-solid samples (processed tangerine, lemon and tomato) were 252 

blended with water. The pH of the pesticides-spiked samples was adjusted to 253 
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neutral by addition of a solution of NaOH. Each sample was centrifuged for 10 min 254 

at 4000 g, the supernatant was diluted with methanol and the sample was 255 

centrifuged again in the same conditions. Finally, each sample was filtered twice 256 

prior to injection: first through a 0.45 m nylon filter and then through a 0.22 m 257 

nylon filter.  258 

 259 

3.7. HPLC procedure 260 

The data matrices were collected using wavelengths from 200 to 350 nm 261 

each 1 nm, and each 1.6 s in the elution time axis. The slit width was 1 nm. The 262 

time-absorption matrices were of size 356 × 151 and were saved in ASCII format, 263 

and transferred to a PC for subsequent manipulation.  264 

The mobile phase used for all chromatographic runs was a 50:50 (v/v) 265 

mixture of water and methanol, delivered at a flow rate of 1.0 mL min-1 with a 266 

chromatographic system operating under isocratic mode. Each chromatogram was 267 

accomplished in 9.5 minutes. 268 

 269 

4. Results and discussion 270 

4.1. Analysis of the calibration set 271 

Using pure analyte standards, a chromatographic method allowing their 272 

partial separation was developed, making proper selection of the range of detected 273 

wavelengths and the composition of the mobile phase, in order to obtain an overall 274 

chromatographic time of less than 10 min. Under these conditions, when 275 

calibration samples were eluted, a cluster of coeluting peaks and two individual, 276 
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fully resolved peaks appeared in all chromatographic runs (Fig. 2). Specifically, the 277 

MCR-ALS algorithm was used to process LC–DAD matrices taken at specific 278 

elution time ranges. Each chromatographic data matrix was divided in the following 279 

time regions: region I (3.3–6.9 min) and region II (7.3–9.5 min). These regions 280 

were delimited taking into account the spectrum of each analyte (Fig. 3), i.e., the 281 

wavelength ranges required to resolve them. Region I includes the four first eluted 282 

analytes: MBC, TBZ, PRO and FBZ. The spectrum of these analytes show that the 283 

high sensitivity range is from 250 nm to 350 nm, thus the wavelength range from 284 

200 nm to 249 nm was discarded in their analysis. However, region II includes the 285 

last eluted analyte, CBL, whose maximum absorption peak is at 220 nm. In this 286 

region, the full wavelength range was selected. 287 

 288 
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 289 

Figure 2 290 
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 291 

Figure 3 292 

 293 

Notice in Fig. 2 that the the analyte elution time profiles significantly shift 294 

from run to run. This effect, combined with the presence of potential interferents in 295 

some of the analyzed samples, makes it difficult to align the chromatograms in the 296 

time mode, in order to restore the trilinearity required by some second-order 297 

multivariate algorithms. This is the main reason for employing the MCR–ALS 298 

algorithm for data processing. For each time region, MCR–ALS was applied to 299 

augmented matrices in the elution time direction, corresponding to the 300 

simultaneous analysis of the HPLC–DAD data matrices for the calibration set of 301 

samples. In this analysis, initialization of the multivariate algorithm was performed 302 
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using spectral estimates obtained from the analysis of the purest variables. Non-303 

negativity restriction was applied in both modes; unimodality restriction was applied 304 

in the elution time mode only to the signals corresponding to the analytes (not to 305 

the background signal) but correspondence restriction was not applied during the 306 

ALS optimization phase. 307 

The number of components was estimated by means of principal component 308 

analysis (PCA). PCA is a mathematical procedure that uses orthogonal 309 

transformation to convert a set of observations of possibly correlated variables into 310 

a set of values of linearly uncorrelated variables called principal components: the 311 

first principal component has the largest possible variance (that is, accounts for as 312 

much of the variability in the data as possible), and each succeeding component in 313 

turn has the highest variance possible under the constraint that it be orthogonal to  314 

the preceding components. The estimated number of components was five in 315 

region I and two in region II, which can be justified taking into account the presence 316 

of five different signals (corresponding to MBC, TBZ, PRO, FBZ and a background 317 

signal) in region I and two different signals (corresponding to CBL and a 318 

background signal) in region II. The resolution of calibration samples provided the 319 

characteristic chromatographic profiles and pure spectra for the different analytes 320 

plus one signal corresponding to a background. The number of iterations was less 321 

than 10 in all cases, with a residual fit lower than 0.07 mUA (region I) and 0.1 mUA 322 

(region II). Both residual fits are on the order of the expected instrumental noise 323 

associated with DAD detection. 324 

After MCR–ALS resolution of the augmented calibration matrix, a pseudo-325 

univariate calibration was carried out for each compound. The parameters 326 
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corresponding to the linear regression of the scores from Eq. (5) vs. the 327 

corresponding nominal concentrations are shown in Table 2.  328 

 329 

Figure 4 330 

 331 

Region I corresponds to the fully overlapped peaks for PRO and FBZ, the 332 

partially overlapped peak for TBZ and also to the isolated peak for MBC (Fig. 4A). 333 

Five different independent contributions were resolved by MCR–ALS in the first 334 
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peak cluster, corresponding to region I (Fig. 4A). For a typical sample, the five 335 

MCR–ALS resolved elution profiles are shown in Fig. 4B, and the spectra (common 336 

to all samples) in Fig. 4C. These five contributions were identified as the analytes 337 

MBC, TBZ, PRO, FBZ and a background signal by comparison of the MCR-338 

obtained spectra with the actual spectra of the pure compounds (Fig. 3). 339 

Coelutions shown in Fig. 4A are untreatable by traditional chromatography; 340 

however, mathematical resolution using MCR–ALS was still possible by processing 341 

second-order HPLC–DAD data.  342 

Region II contained a fully resolved peak at 8.3 min belonging to CBL. The 343 

analysis of CBL was done both by the traditional method of area measurements 344 

and by applying MCR–ALS to the sub-matrix containing its isolated peak. There 345 

were not significant differences between the results obtained in both ways 346 

(p=0.337). Figure 4D, 4E and 4F show the contour plot, the chromatogram and 347 

spectrum corresponding to this region.   348 

 349 

4.2. Analysis of the validation set 350 

As indicated above, data matrices were analyzed by creating augmented 351 

matrices with sub-matrices corresponding to specific time and wavelength windows 352 

(regions I and II). For quantifying the analytes in the validation set of samples, each 353 

validation HPLC–DAD data matrix was divided into the two selected regions. For 354 

each time region, a time mode augmented matrix was created. Each augmented 355 

matrix contained, adjacent to each other, the sub-matrices corresponding to the 356 

validation samples and to the calibration samples. As before, non-negativity in both 357 

modes and unimodality in the time mode (but not correspondence) were applied 358 
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during ALS optimization. Unimodality was only applied to the signal corresponding 359 

to the analytes but not to the background signals. After optimization with the 360 

multivariate algorithm, the scores corresponding to each analyte in each validation 361 

sample were isolated, and prediction proceeded by interpolation into the pseudo-362 

univariate score-concentration calibration plot. Good Linear relationships between 363 

MCR–ALS scores and nominal concentrations were found in all cases, supported 364 

by the linearity test recommended by IUPAC [39]. The statistical results when 365 

MCR–ALS was applied to this validation set are shown in Table 2, implying 366 

linearity for all analytes.  367 

As can be observed in Table 3, the predictions for the five analytes are in 368 

good agreement with the corresponding nominal values. The root mean square 369 

error of prediction (RMSEP) and the relative errors of prediction (REP), computed 370 

with respect to the mean calibration concentration of each analyte, can be 371 

calculated as follows: 372 

        (6) 373 

          (7) 374 

where ypred,t is the predicted concentration in each sample, ynom,t is the nominal 375 

value of the concentration in the sample, T is he number of test samples, and ȳ cal 376 

is the mean calibration concentration. The RMSEP and REP values are also 377 

quoted in Table 3. The limits of detection (LOD) and limits of quantification (LOQ) 378 

were calculated taking into account the errors of the slope and intercept of the 379 
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pseudo-univariate calibration curves, as was previously reported by Saurina et al 380 

[40].  381 

 382 

4.3. Analysis of spiked real samples 383 

Official regulating agencies recommend maximum residue levels (MRL) for 384 

the presently studied pesticides which are listed in Table 4 for the assayed fruits 385 

and vegetables samples. As can be seen, these values are higher than the 386 

calculated LOD (Table 3), and thus analyte pre-concentration is not required. 387 

Real fruit and vegetable samples were spiked with these five pesticides and 388 

were subjected to the analytical protocol discussed above. The estimated number 389 

of components was seven or eight in region I and four in region II, i.e., there are 390 

additional components in comparison to the calibration and validation samples. 391 

Therefore, the analysis of these samples revealed that there are various interfering 392 

species in each region, depending on the sample.  393 
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 394 

Figure 5 395 

Each data matrix was divided into the two selected regions. As before, non-396 

negativity in both modes and unimodality in the time mode were applied during 397 

ALS optimization. Unimodality was only applied to the signal corresponding to the 398 

analytes but not to the background signals or to the signals corresponding to 399 

interferents. In fact, some of the signals corresponding to interferents have more 400 

than one maximum in the time mode. This may be indicating that the interferents 401 

are not unique compounds, but also a combination of compounds with similar UV 402 



23 
 

spectra that cannot be resolved by MCR. As regards the correspondence 403 

restriction (which informs MCR-ALS that the potential interferents are absent in the 404 

calibration samples), it is interesting that there was no significant difference when 405 

applying correspondence or when this restriction was not applied. The number of 406 

iterations was less than 100 in all cases, with a residual fit lower than 0.3 mUA 407 

(region I) and 0.45 mUA (region II).  408 

Figure 5 (A to F) shows the contour plot, the chromatogram and spectrum 409 

corresponding to both regions for one sample of orange juice. As can be seen, the 410 

spectra corresponding to the interfering species were different to those 411 

corresponding to the pesticides, allowing their resolution. The recovery results 412 

corresponding to different levels of each pesticide the five type of sample assayed 413 

are collected in Table 4. As can be appreciated, the predictions for the analytes are 414 

in good agreement with the nominal values. If the elliptical joint confidence region 415 

is analyzed for the slope and intercept of plot of predicted vs. nominal 416 

concentrations we conclude that the ellipse includes the theoretically expected 417 

values of (1,0), indicating the accuracy of the used methodology (data not shown). 418 

Indeed, a paired t-test indicates no significant difference between the nominal 419 

concentrations and the predicted using the presently proposed methodology. The p 420 

values are also listed in Table 4. This strongly suggests that HPLC-DAD combined 421 

to MCR-ALS is a useful methodology for the analysis of these pesticides in 422 

commercial juices, fruit and vegetable samples. 423 

 424 

 425 

 426 
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5. Conclusions 427 

Complex samples including strongly coeluting analytes, elution time shifts, 428 

band shape changes and presence of uncalibrated interferents have been 429 

analyzed by HPLC–DAD. The flexibility of the applied multivariate model (MCR–430 

ALS) allows the prediction of the concentrations of five analytes in a set of 431 

validation samples. More importantly, in the most challenging analytical scenario, 432 

i.e., real vegetable and fruit samples, these five analytes were quantified within a 433 

coeluting cluster in the presence of unwanted and non calibrated signals, achieving 434 

the second-order advantage which is inherent to second-order HPLC–DAD 435 

information. 436 
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Table 1: Calibration concentrations (g L–1) for the five assayed analytes. 511 

Sample MBC TBZ PRO FBZ CBL 

1 0.0 62.1 1376 79.4 136.0 

2 0.0 165.6 1376 79.4 122.4 

3 22.8 62.1 516 79.4 102.0 

4 22.8 165.6 516 29.8 81.6 

5 57.0 165.6 1376 29.8 68.0 

6 57.0 62.1 1376 29.8 54.4 

7 91.2 113.8 172 54.6 34.0 

8 91.2 113.8 946 9.9 13.6 

9 114.0 113.8 1720 54.6 0.0 

10 114.0 165.6 516 79.4 136.0 

11 136.8 113.8 946 54.6 122.4 

12 136.8 207.0 946 54.6 102.0 

13 171.0 20.7 946 54.6 81.6 

14 171.0 113.8 946 99.2 68.0 

15 205.2 62.1 516 29.8 54.4 

16 205.2 207.0 0 0.0 34.0 

17 228.0 0.0 1720 0.0 13.6 

18 228.0 0.0 0 99.2 0.0 

 512 

513 
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Table 2: Summary of the results from the pseudo-univariate calibration curves for 514 

all analytes a. 515 

 Slope b Intercept b r2 sy/x p value 

MBC 1.48(3) -2(4) 0.9833 14 0.161 

TBZ 5.16(7) 11(9) 0.9894 29 0.464 

PRO 0.252(4) 7(4) 0.9917 13 0.603 

FBZ 9.8(2) 20(10) 0.9894 33 0.262 

CBL 12.0(2) -10(10) 0.9902 56 0.253 

 516 

a
 r

2
, squared correlation coefficient; sy/x, standard deviation of regression residuals, p value, 517 

probability associated to the IUPAC recommended F test for linearity (p > 0.05 implies linearity at 518 

95% confidence level). 519 

b 
Standard deviation in parenthesis. 520 

521 
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Table 3: MCR–ALS results for the prediction of the studied analytes in the validation set of samples. 522 

Sample 

MBC (g L
-1
) TBZ (g L

-1
) PRO (g L

-1
) FBZ (g L

-1
) CBL (g L

-1
) 

N P
a
 N P

a
 N P

a
 N P

a
 N P

a
 

1 173.0 170(6) 95.2 87.1(2) 963 920(30) 9.9 10(2) 12.2 11.3(7) 

2 166.0 165(4) 137.0 136(3) 1030 1070(10) 82.3 81(4) 121.0 123(3) 

3 0.0 1.1(2) 149.0 146.7(4) 602 570(10) 32.7 31(3) 70.7 69(2) 

4 228.0 234(7) 53.8 51(2) 1340 1240(60) 21.8 21(2) 96.6 94(2) 

5 160.0 157(5) 164.0 158(3) 1170 1160(10) 71.4 71(4) 132.0 125(2) 

6 77.5 75.8(4) 51.8 54.2(2) 1100 1100(10) 36.7 36.1(4) 44.9 46.1(9) 

7 22.8 24(2) 176.0 185(2) 1340 1360(10) 45.6 44.6(4) 46.2 47.7(6) 

8 166.0 166(5) 74.5 73(2) 654 603(8) 0.9 - 89.8 88(2) 

9 185.0 188(5) 20.7 15.7(1) 1200 1180(20) 13.9 13(2) 20.4 20.5(9) 

10 66.1 66(2) 186.0 185.8(3) 361 340(10) 54.6 55(3) 6.8 6(2) 

RMSEP 2.6 4.7 43 0.85 2.6 

REP (%) 2.1 4.3 4.4 2.3 4.0 

LOD 2.3 0.90 12 0.46 0.32 

LOQ 6.9 2.7 36 1.4 1.1 

Sensitivity 0.092 0.24 0.018 0.47 1.2 

Selectivity 0.53 0.29 0.69 0.31 0.73 

Analytical  

sensitivity 
1.4 3.7 0.28 7.2 2.9 

  523 

 
a
 Standard deviation in parenthesis. N = nominal, P = predicted. 524 

525 
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Table 4: MCR–ALS results for the prediction of the studied analytes in the spiked samples. 526 

Sample 

MBC (g L
-1
) TBZ (g L

-1
) PRO (g L

-1
) FBZ (g L

-1
) CBL (g L

-1
) 

N P
a
 N P

a
 N P

a
 N P

a
 N P

a
 

O
ra

n
g
e
 J

u
ic

e
 

1 185.0 195(4) 16.6 15.9(7) 1170 1310(20) 79.4 72.2(7) 5.7 6.91(7) 

2 73.0 80(3) 10.4 12.2(7) 48 57(1) 30.8 28.1(4) 88.4 97(1) 

3 11.4 15(3) 47.6 43.1(8) 860 940(10) 34.7 35.3(4) 42.2 48.6(6) 

4 153.0 145(5) 93.1 84(2) 22 36(2) 12.9 8.1(3) 15.0 16.2(8) 

MRL 200 5000 50 50 10 

RMSEP 7.6 5.2 81 4.5 5.4 

REP (%) 6.6 4.9 9.2 8.9 8.0 

G
ra

p
e
fr

u
it
 J

u
ic

e
 

5 210.0 218(6) 76.6 72(4) 1030 1080(20) 41.7 44(1) 135.0 132(6) 

6 198.0 191(5) 201.0 205(8) 69 53(4) 14.9 11.8(6) 6.8 7.9(3) 

7 155.0 163(5) 153.0 160(6) 1720 1810(40) 77.4 81(2) 16.3 12.2(6) 

8 25.1 20.1(9) 64.2 70(3) 34 37(3) 45.6 42(2) 105.0 101(4) 

MRL 200 5000 50 50 10 

RMSEP 7.2 5.5 52 3.2 3.1 

REP (%) 6.4 5.1 5.8 6.3 4.6 

L
e
m

o
n
 

9 160.0 151(3) 80.7 75(2) 224 250(10) 14.9 15.5(4) 40.8 38.8(9) 

10 66.1 70(2) 97.3 103(3) 172 180(10) 68.4 71(1) 72.1 75(2) 

11 228.0 239(5) 132.0 136(3) 1690 1670(20) 71.4 69(1) 69.4 64(2) 

12 29.6 30.1(6) 82.8 79(2) 654 690(20) 48.6 50.5(8) 6.8 7.5(7) 

MRL 700 5000 300 50 10 

RMSEP 7.2 4.8 44 2.0 3.2 

REP (%) 6.4 4.5 5.0 4.0 4.8 

 527 

This table continues in the next page. 528 

529 
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Table 4 (continued) 530 
T

a
n
g
e
ri
n

e
 

13 132.0 125(3) 159.0 150(10) 1100 1070(20) 5.9 5.2(1) 132.0 125(2) 

14 198.0 204(5) 97.3 102(5) 1200 1140(20) 20.8 19(1) 15.0 12.1(2) 

15 93.5 97(2) 207.0 200(20) 430 440(10) 87.3 83(1) 80.2 78(1) 

16 59.3 64(2) 132.0 126(6) 155 125(7) 41.7 47(2) 6.8 6.6(3) 

MRL 700 5000 300 50 10 

RMSEP 5.4 7.1 39 3.6 3.9 

REP (%) 4.8 6.7 4.4 7.0 5.8 

T
o

m
a
to

 

17 38.8 42(1) 84.9 87.6(9) 206 166(4) 21.8 29.6(4) 124.0 131(3) 

18 80.9 76(2) 97.3 91(1) 1010 970(10) 25.8 23.5(3) 8.2 9.8(2) 

19 108.0 115(2) 128.0 121(1) 740 797(8) 60.5 56.9(7) 59.8 65(2) 

20 213.0 203(3) 15.5 21.3(7) 17 38(7) 40.0 43.6(6) 24.5 21(2) 

MRL 300 50 50 50 10 

RMSEP 6.8 5.8 43 4.8 4.8 

REP (%) 5.9 5.4 4.9 9.5 7.1 

p value 0.389 0.206 0.794 0.439 0.694 

 531 

 
a
 Standard deviation in parenthesis. N = nominal, P = predicted. 532 

533 
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Figure captions 534 

Figure 1: Chemical structures of the five assayed pesticides. 535 

 536 

Figure 2: Liquid chromatograms ( of detection: 280 nm) for the set of calibration 537 

samples. The signal corresponding to each analyte was identified. The subregions 538 

selected are highlighted. 539 

 540 

Figure 3: Spectra of pure standards of the five assayed pesticides in medium 541 

methanol-water (50:50 v/v). Pesticide concentration: 1 mg/L.  542 

 543 

Figure 4: Results for the analysis of a calibration sample. (A) Surface plot around 544 

the first cluster peak (region I) containing the analytes MBC, TBZ, PRO and FBZ 545 

(B) MCR–ALS resolved elution profiles for the same sample, with all analytes 546 

indicated. (C) Spectral profiles retrieved by MCR–ALS analysis, which are common 547 

to all samples. (D) Surface plot around the region II containing CBL (E) MCR–ALS 548 

resolved elution profiles in region II. (F) Spectral profiles retrieved by MCR–ALS 549 

analysis. 550 

 551 

Figure 5: Results for the analysis of an orange juice sample. (A) Surface plot 552 

around the first cluster peak (region I) containing the analytes MBC, TBZ, PRO and 553 

FBZ (B) MCR–ALS resolved elution profiles for the same sample, with all analytes 554 

indicated. (C) Spectral profiles retrieved by MCR–ALS analysis. (D) Surface plot 555 
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around the region II containing CBL (E) MCR–ALS resolved elution profiles in 556 

region II. (F) Spectral profiles retrieved by MCR–ALS analysis. 557 

 558 
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